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ABSTRACT

Automatic Speech Recognition (ASR) is essentially a
problem of pattern classification, however, the time
dimension of the speech signal has prevented to pose ASR
as a simple static classification problem. Support Vector
Machine (SVM) classifiers could provide an appropriate
solution, since they are very well adapted to high-dimension
classification problems. Nevertheless, the use of SVMs for
ASR is by no means straightforward, because SVM
classifiers require a fixed-dimension input. In this paper we
propose and compare three alternatives for adapting the
parameterization to the fixed-input dimension required by
SVMs. We show that SVM classifiers outperforms the
conventional HMM-based ASR system, when the speech
signal is parameterised at properly selected instants.

1. INTRODUCTION

Hidden Markov Models (HMMs) are, undoubtedly, the most
employed core technique for Automatic Speech Recognition
(ASR). During the last decades, research in HMMs for ASR
has brought about significant advances and, consequently, the
HMMs are currently accurately tuned for this application.
Nevertheless, we are still far from achieving high-
performance ASR systems.

Some alternative approaches, most of them based on
Artificial Neural Networks (ANNs), were proposed during
the last decade ([12], [9], [15], [2] and [3] are some
examples). Some of them tackled the ASR problem using
predictive ANNs, while others proposed hybrid (HMM-
ANN) approaches. Nowadays, however, the preponderance
of HMM s in practical ASR systems is a fact.

Speech recognition is essentially a problem of pattern
classification, but the high dimensionality of the sequences of
speech feature vectors has prevented researchers to propose a
straightforward classification scheme for ASR. Support
Vector Machines (SVMs) are state-of-the-art tools for linear
and nonlinear knowledge discovery [13], [16]. Being based
on the maximum margin classifier, SVMs are able to
outperform classical classifiers in the presence of high
dimensional data even when working with nonlinear
machines.

Some researchers have already proposed different
approaches to speech recognition aiming at taking advantage
of this type of classifiers. Among them, [6], [7] and [14] use
different approaches to perform the recognition of short
duration units, like isolated phoneme or letter classification.
In [6], the authors carry out a length adaptation based on the
triphone model approach. In [7] and [14], a normalizing
kernel is used to achieve the adaptation. Both cases show the
superior discrimination ability of SVMs. Moreover, in [7], a
hybrid approach based on HMMs has been proposed and
tested in a CSR (Continuous Speech Recognition) task.

Nevertheless, the use of SVMs for ASR is by no means
straightforward. In fact, typical speech analysis generates
sequences of feature vectors of variable lengths (due to the
different acoustic units durations and the constant frame rate
analysis commonly employed), while SVM classifiers
require a fixed-dimension input. In this paper we propose and
compare three ways of adapting the parameterization to the
fixed-input dimension required by SVMs. The first is based
on adjusting the duration of the analysis time window. The
second adapts the analysis frame rate. The third one uses the
non-uniform distribution of analysis instants provided by the
internal states of an HMM and a Viterbi decoder.

This paper is organized as follows. In next section, we
describe the proposed approaches for the design of a fixed-
dimension parameterization module. Section 3 summarizes
the SVM training and classification procedures. In Section 4
we present the experimental framework and the results
obtained. Finally, some conclusions and further work close
the paper.

2. FEATURE EXTRACTION AND
NORMALIZATION

Since the speech signal is not stationary, speech analysis
must be performed on a short-term basis, in which the signal
is assumed to be quasi-stationary. Typically, a speech signal
is divided into a number of overlapping temporal windows
(typically, Hamming) and a speech feature vector is
computed to represent each of these temporal frames. The
size of the analysis window, wy, is usually of 20-30 ms. The
frame period, f,, (the interval between two consecutive
feature vectors) is set to a value between 10 and 15 ms. The
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selected values for these parameters (w, and f,) in our
particular approach will be discussed later.

With respect to the feature vectors themselves, for each
analysis  window, twelve Mel-Frequency  Cepstral
Coefficients (MFCC) are obtained using a mel-scaled
filterbank with 40 channels. Then, the log-energy, the twelve
delta-cepstral coefficients and the delta-log energy are
appended, making a total vector dimension of 26.

Typically, the values of w; and f, are kept constant for every
utterance that, on the other hand, presents a different time
duration. Consequently, the speech analysis generates
sequences of feature vectors of variable lengths. As we have
already mentioned, a normalization of these lengths is
required to use SVM classifiers. In next paragraphs, we
propose three different alternatives for solving this problem.

2.1 Variable window size

As in the traditional parameterization procedures, in this
case, the window size is chosen to be proportional to the
frame period (i.e. w, = K f,), with K (the overlapping factor)
being constant for all utterances. Nevertheless, the value of
wy for every utterance is selected in such a way that the
number of feature vectors results the same. Next, f, is
computed as w; /K as illustrated in Figure 1.

Using this method, we are able to provide the SVM with
sequences of feature vectors of the same length. However,
when the value w; is too large, the analysed speech segment
does not meet the required stationarity properties and,
therefore, some relevant details of the speech signal are
missing.

2.2 Fixed window size

To overcome the above mentioned weakness, we propose to
keep the value of the window size constant for every
utterance. Our intention is to work with an analysis window
length (30 ms) more consistent with the hypothesis of quasi-
stationarity, avoiding to some extent the smoothening effect
due to longer windows. However, for obtaining a fixed input
vector dimension, we need to dynamically select the frame
period (or the overlapping factor, K) for each speech
utterance. Figure 1 b) shows an extreme example in which
analysis windows are no longer overlapped. Therefore,
again, some information is missing for long speech
utterances.

It is important to notice, however, that through delta
parameters (which consider two previous and posterior
frames) some information of the surrounding of the current
analysis window is included in the feature vectors.

2.3 Non-uniform distribution of analysis instants

In the two previous procedures the speech feature vectors
were produced without any consideration about the
information (or lack of information) that speech analysis
segments were providing. Obviously, it would be better if we
could use those utterance segments in which the signal is

changing, that is, those segments carrying a bigger amount of
information.

To determine more appropriate analysis instants, we propose
to use the information contained in the HMM segmentation,
i.e., to consider those instants in which state transitions are
produced. A fixed size window is subsequently located in
those positions as in the previous case (see Section 2.2).
Note, however that, with this information-driven procedures
we have eliminated the arbitrariness in the process of
selecting the analysis instants.

3. SVM TRAINING AND CLASSIFICATION
Given a labelled training data set {(x;, ¥;), ..., (X», Vu)}

(x;eR? and y;e {£1}, where x; is the input vector and y; is its
corresponding label), an SVM solves the following equation

1 C
min 15 +C2 s

subject to
yi(qu’(Xi)"_b)Z &—¢;
ft_ >0

Where w and b define the linear classifier in the feature space
and ¢(-) is the non-linear transformation to the feature space
(x;eR—>¢(x;))eR”, d < H). Unless §(x) = x, the solution in
the input space will be nonlinear. The SVM minimizes the
norm of w subject to correct classification of all the samples
(for every &; = 0). If the training samples are not separable,
the slack variables, &; corresponding to the samples that can
not be correctly classified will become nonzero and will be
penalised in the objective function. The SVM is usually
solved introducing the restrictions in the minimizing
functional using Lagrange multipliers, leading to the
maximization of the Wolfe dual:

L, = Zn:ai _Zn:i)’iJ’ijaiaj‘l’T(Xi)‘l’(xj)
i=1

i=l j=1

with respect to ¢; and subject to Zai =0 and 0 < o, < C.
i=1

This procedure can be solved using quadratic programming
(QP) schemes. To solve Wolfe dual, we do not need to know
the nonlinear mapping ¢(-), but only its Reproducing Kernel
in Hilbert Space (RKHS) k(x;Xx;) = ¢T(x,»)¢(xj). The value of
w and b can be recovered from the Lagrange multipliers ¢,
that are associated with the first linear restriction in the SVM
formulation.
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For ASR, the input vectors, x;, will be the concatenation of a
fixed number (fixed input dimension) of feature vectors.
Furthermore, the classification problem should be formulated
as a binary classification. There are typically two approaches
to solve non-binary classification problems with the standard
binary SVM. First, by comparing each class against all the
rest (1-vs-all). Second, by confronting each class against all
the other classes separately (1-vs-1) [1]. The decisions are
usually taken using a majority vote. It is still unclear which
one is the most powerful technique and our experience with
1-vs-all techniques suggests that it is an advisable approach
for this problem.

4. EXPERIMENTAL RESULTS

4.1 Baseline System and Database

The baseline is an isolated-word, speaker-independent
HMM-based ASR system developed using the HTK
package [17]. Left-to-right HMM with continuous
observation densities are used. Each of the whole-digit
models contains a different number of states (which depends
on the number of allophones in the phonetic transcription of
each digit) and three Gaussian mixtures per state.

We use a database consisting of 72 speakers and 11
utterances per speaker for the 10 Spanish digits. This
database was recorded at 8 kHz in clean conditions. Since the
database is limited to achieve reliable speaker-independent
results, we have used a 9-fold cross validation to artificially
extend it. Specifically, we have split each database into 9
balanced groups; 8 of them for training and the remaining
one for testing, averaging the results afterwards. In summary,
we use a total of 7,920 words for testing our systems.

For the baseline experiment with the HMM classifier, a
Hamming window with a width of 30 ms was used and the
feature vectors (consisting of 12 MFCC, the log-energy, 12
delta-MFCC and the delta-log energy) were extracted once
every 10 ms. In this case, both, the window size and the
frame period were kept constant for parameterizating all
utterances. The average recognition rate achieved by the
HMM system was 99,67%. In other terms, only 25 errors
over the 7,920 tested words.

4.2 Experiments and Results

Table 1 shows the word recognition rates achieved using the
three methods described in Section 2. In the variable window
size and in the fixed window size methods and SVM
classifiers (always 1 vs. all) we have made an heuristic
search for the best number of feature vectors per utterance. In
both cases the optimal number we found was 13, rendering
the variable window size method better results than the fixed
window method (98.38 % recognition rate vs. 97.03 %), but
slightly worse than that by the HMM-based system (99.67
%).

For the third method proposed we have used a 17 state HMM
to produce the sampling instants in which the speech signal is
analysed. Thus, in this case we use 17 feature vectors per
utterance as the SVM input. The results obtained are the best

ones, even better than those obtained with the HMM-based
ASR system (99.89 % vs. 99.67 %), reaching only 9 errors
over 7,920 tested words.

5. CONCLUSIONS AND FURTHER WORK

The performance of the three approaches for the SVM-based
ASR system proposed in this paper is very close to that
achieved by a conventional HMM-based ASR system. From
our point of view, this result is very appealing since HMM-
based systems has been tuned during the last three decades
for this task.

In particular, the SVM-based system with the fixed-
dimension parameterization based on a non-uniform
distribution of sampling instants outperforms the
conventional HMM-based ASR system. We even expect to
improve results investigating if there exist an optimum
number of HMM states. We also intend to search for the best
SVM kernel parameters .

Obviously, though this method needs to be refined, we
expect substantial improvements using a smarter
parameterization procedure. We intend to work on a more
sofisticated procedure to achieve the fixed-dimension input.
Since the human auditory system is relatively insensitive to
slowly varying stimuli [8], we propose to focus the spectral
sampling on the time instants corresponding to the sharpest
transitions in the spectral domain. Specifically, we propose
to distribute the sampling instants in each utterance
according to the derivative of the spectral features, instead
of the sampling instants provided by the internal states of an
HMM.

On the other hand, we expect to extend the SVM framework
for ASR along two directions: string kernels and kernel target
alignment. The first one, which has been used with success
for protein [10] and text [11] classification, could be easily
extended to speech processing provided we define a
similarity measure for voice utterances. The second approach
is a subtle transformation of the kernel matrix to tune its
entries to the labels of the given problem [5], [4],
significantly improving the performance of the machine
obtained. This last approach is mainly described for
transductive learning [16] in which the whole test set needs
to be known a priori, which is its most severe limitation.

Variable Fixed F "‘Sei‘zievf;‘;t‘:low HMM
window window HMM based ASR
S1z€ S1ze .
Segmentatloll
Word
Recognition | 98.38 % 97.03 % 99.89 % 99.67 %
Rate %

Table 1. Recognition results using a SVM-based classifier
and the three proposed time—normalized parameterizations:
variable window size, fixed window size and fixed window
size with HMM segmentation. The result obtained with the
conventional HMM-based ASR system is presented as well.
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Figure 1. Two different approaches for normalizing the length of feature sequences: variable (figure 1a) and fixed (figure 1b)
window size
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