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ABSTRACT

Requantization is one of the tools for bit-rate reduction of
pre-encoded video to adapt it to various network bandwidth
constraints. Several recent works propose using Lagrangian
optimization to find the optimal quantization step for each
coded macro-block, to meet a desired rate at minimum distor-
tion. In this paper we propose to extend the Lagrangian op-
timization procedure by allowing the modification of quan-
tized coefficients values, including setting their values to
zero, in addition to quantization step-size selection. Coef-
ficient value modification and quantization step-size selec-
tion are optimally done using a low complexity trellis-based
procedure. The proposed requantization algorithm provides
higher PSNR values than the Lagrangian-based optimization
method that only handles the selection of quantization steps,
and still does not exceed considerably its complexity.

1. INTRODUCTION

Transrating of MPEG-2 coded video aims at reducing the
bit-rate of the encoded stream in situations like channel con-
gestion, or matching the encoded video bit stream rate to a
low bit rate destination, while preserving the highest possi-
ble quality of the rate-reduced video. A common approach
for bit-rate reduction, in the compressed domain, is requanti-
zation by increasing the quantization step-size of the Discrete
Cosine Transform (DCT) coefficients in each block. Several
works propose very low complexity open-loop transcoding
[6, 7], while other take the advantage of error compensation
provided by a closed-loop scheme [1, 5]. Instead of ”sim-
ple” requantization, which applies the standard complexity
model and rate control of TM5 to set a new quantization
step-size for each macro-block (MB), several recent works
propose using Lagrangian optimization for finding the opti-
mal quantization step for each MB to meet a desired bit-rate
at minimum distortion [2, 1]. It is shown in [1] that the opti-
mally transrated bit stream provides a higher peak-signal-to-
nose-ratio (PSNR) than a cascade of decoder-encoder (i.e.,
re-encoding of the decoded video to the reduced bit-rate),
and can even provide a better video quality than the stan-
dard TM5 encoder applied to the original video sequence
at the reduced rate. Lagrangian optimization was also used
recently for discarding certain quantized coefficients in I-
frames [6]. In this paper we propose to extend the Lagrangian
optimization procedure by allowing also the modification of
quantized coefficients values, including setting their values
to zero, in all frame types. The organization of this paper is
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as follows: Section 2 describes the MPEG-2 encoding proce-
dure. Section 3 presents the pertinent Lagrangian optimiza-
tion method. In section 4 we introduce the idea of quantized
coefficients modification and in section 5 we present its ef-
ficient implementation using a trellis diagram. Complexity
issues are discussed in section 6. In sections 7 and 8, ex-
perimental results are shown and conclusions are presented,
respectively.

2. MPEG-2 AC COEFFICIENTS ENCODING

Following the application of the DCT to each of 4 luminance
8*8 blocks and from 2 to 8 chrominance blocks (depending
on video format), which form a MB, the DCT coefficients,
except for the DC coefficient, are quantized. For each MB, a
value from one of two possible tables, each having 32 quan-
tization step-size values, is selected (a different table can be
chosen for each frame). The actual quantization step-size
used for each coefficient is the product of the selected step-
size from the table and a value defined by a suitable quanti-
zation matrix that depends on the MB type. The 63 quantized
AC coefficients are concatenated in an order defined by one
of two possible zig-zag scans. The resulting 6 to 12 vectors,
of 63 quantized coefficients each, constituting a MB, are en-
tropy coded by a variable-length coding (VLC) table. Each
coefficient vector is divided into several parts, with each part
consisting of a run of consecutive zeros followed by a non-
zero level value, defining a run-level pair. In case of adja-
cent non-zero level values, the run length is defined to be
zero. The MPEG-2 standard defines for every run-level pair
a variable-length codeword. There are two VLC tables that
can be used. It is possible to use the same table for all types
of MBs, or to use a different one for Intra MBs [4].

3. REQUANTIZATION VIA LAGRANGIAN
OPTIMIZATION

The requantization problem can be formulated as an opti-
mization problem of determining a set of quantization step-
sizes that minimize the total distortion in each frame, under
a given bit-rate constraint:

min
{qk}

D, under the constraint R≤ RT (1)

with ,

D =
N

∑
k=1

dk(qk), R =
N

∑
k=1

rk(qk), (2)

where, N - number of MBs in the frame; qk - quantization
step for the k-th MB; dk - distortion caused to the k-th MB;
rk - number of bits produced by the k-th requantized MB.
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An analysis for the conventional MSE distortion metric is
presented in [1]. The problem can be converted into an un-
constrained one by merging rate and distortion through a La-
grange multiplier λ ≥ 0 into the cost function:

Jtotal = D+λR (3)

λ defines the relative importance of rate against distortion in
the optimization procedure. The Lagrangian cost can be in-
dependently calculated for each MB. Thus, for the k-th MB:

Jk(λ ) = min
qk

{dk(qk)+λ rk(qk)} (4)

The particular value of λ , denoted λs, which provides the
desired total bit-rate, i.e., ∑N

k=1 rk(λs) = RT , needs to be
found. This is typically done by a search procedure for ev-
ery frame, if the problem is solved on a frame level, or for
every slice, if bit-rate allocation is provided on that level.The
set {qk(λs)}N

k=1 is the optimal set of quantization step-sizes
that provides the minimum distortion for the given total rate
constraint, RT .

4. QUANTIZED DCT COEFFICIENTS
MODIFICATION

The idea of modifying the levels of quantized DCT coeffi-
cients, before applying VLC, for bit-rate reduction was pro-
posed in [6, 3]. However, [6] discusses only methods for ex-
cluding AC coefficients in I-frames, and [3] considers only
discarding several last non-zero coefficients in the zig-zag
scan. In this work we propose to extend the Lagrangian opti-
mization presented in the previous section to include the pos-
sible modification of the values of all quantized DCT coef-
ficients in an efficient way. The suggested optimization pro-
cedure aims at selecting quantized DCT coefficient values,
as well as optimal quantization step sizes, that will provide
a bit-rate that is as close as possible to the desired one, with
minimal distortion.

As in the optimization problem stated in section 3, we
may select a different quantization step-size for each MB,
but here we also allow changing the quantized DCT coeffi-
cient value by modifying its level (quantization index) value
after a particular quantization step-size has been applied. The
minimization problem stated in Eq. (1) remains the same, but
now (2) is replaced by:

D =
N

∑
k=1

dk(qk,vk), R =
N

∑
k=1

rk(qk,vk), (5)

where vk denotes the index vector obtained by rounding the
result of dividing the value of each DCT coefficient by the
quantization step-size. All other parameters remain the same
as in Eq. (2). Note that this formulation can be also applied to
the initial encoding of the original data. The problem is still
separable at the MB level - like in (4). But now, for every qk,
an additional minimization over all possible vk values must
be performed. Thus, for the k-th MB, Eq. (4) takes the form
of:

Jk(λ ) = min
qk

min
vk

{dk(qk,vk)+λ rk(vk)}, (6)

and the set {vk(λs)}N
k=1 is the optimal set of quantized vec-

tors that provides the minimum distortion for a given total
rate constraint, RT . Here rk depends explicitly only on the

index vector vk, and not on the initial DCT values. An effi-
cient solution for the stated problem is proposed in the next
section.

For clarification, and to demonstrate the effect of modi-
fying a run-level pair, let (00000,5) be the run-level pair to
be encoded by the MPEG-2 VLC table, and assume that the
distortion is measured relative to it. From the VLC table, the
number of bits needed to encoded this pair is 24. If we split
(00000,5) into two parts (0000,1) and (5), then the number
of bits needed to encode each part is 7 and 6 bits, respec-
tively. Thus, the number of bits is reduced by 11, while the
distortion is increased by 1 (multiplied by the square of the
corresponding quantization step-size), showing that a rela-
tively large reduction in rate can sometimes be obtained by
allowing a modest increase in distortion.

To minimize the total cost function value for particular
values of λ and qk, every run-level pair in a coded block may
need to be modified. To get the actual distortion, the square
of the difference between de-quantized values must be taken.
For each value of λ examined, the total-cost value has to be
calculated for every value of qk, and the minimal cost will
determine the optimal quantization step-size, as well as the
optimal quantized coefficients index vector to be encoded by
the VLC table. A search over suitable values of λ need to
be done to find the value of λ for which the final bit-rate
constraint RT is met.

5. TRELLIS-BASED OPTIMIZATION

In this section a Trellis-based implementation of the above
Lagrangian optimization procedure is discussed.

Let’s define each location in the zig-zag scanned quan-
tized DCT coefficients vector as a different stage in a trellis
(Fig. 1). The cost value of a path is the sum of the costs of
run-level pairs defined by this path. The optimal path up to
a particular stage is the path that has the minimal cost value
over all possible paths ending at that stage. The essence of
a trellis-based algorithm is the fact that minimization of the
cost value at each state of the current stage is the minimiza-
tion of the sum of the current stage local-cost at each state
and the minimal path cost already calculated at the previous
stages of the trellis. It turns out that for the current problem,
where different run-lengths need to be considered, the con-
ventional trellis needs to be modified, so that every decision
in a given stage does depend on previous stages, but luckily
only on a single, already determined, state in each previous
stage, as described below.

Fig. 1 shows how the cost function is evaluated for a par-
ticular stage in the trellis. For trellis stage i (corresponding
to the i-th coefficient) we have states from zero to v max(i).
v max(i) is determined by multiplying the original index
value by the initial quantization step-size, and dividing by
the new one, followed by rounding upwards. In general, ev-
ery possible v, 0 < v ≤ v max(i), should be examined to see
if it minimizes the total cost function J(v, i) in Eq. (7) below.
This cost depends not only on the value of v, but also on the
number of zeros, i.e., the run leading to it, which defines the
run-level pair for the VLC:

J(v, i) = min
run
{J min(i− run−1)+

+
i−1
∑

j=i−run
D0( j)+λR(run,v)+D(v, i)} (7)
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Figure 1: Trellis diagram and possible paths leading to the
i-th DCT coefficient in the zig-zag scanned quantized coeffi-
cients vector.

where,
J min(i− run− 1) - the cost of the minimal path up to the
stage (i− run− 1); D0( j) - the distortion caused by zeroing
the j-th AC coefficient; D(v, i) - the distortion introduced by
choosing v to be the value of the i-th quantized coefficient;
R(run,v) - the number of bits needed to encode the run-level
pair (run,v) using the VLC.

The dotted thin line on the left of Fig. 1 shows the min-
imal path till stage i− run− 1, which has the minimal cost
J min(i− run− 1). Thin arrows connect the last values of
optimal paths in the previous stages to zero; or, in the case
of stage i− 1, directly to the value v in stage i that is being
examined. Different run-lengths need to be examined, but
for a particular run the optimal state in the preceding stage is
already known. The heavy line indicates the optimal path for
the particular value of v.To determine the optimal value of v,
the minimum over all its possible values of v has to be found:

J min(i) = min
0<v≤v max(i)

J(v, i) (8)

This procedure has to be applied to every block in a par-
ticular MB, with every relevant qk. At the end of processing
each MB, for a particular value of λ , the optimal quantization
step-size for that λ is chosen :

qk,opt(λ ) = argmin
qk

No. of blocks in MB

∑
n=1

Jn(λ ,qk) (9)

where, Jn(λ ,qk) is the cost of n-th block in the k-th MB.
Yet, even when the above trellis is used, the number of cal-
culations needed to perform the optimization is rather high.
Hence, in the next subsection we consider ways to speed up
the algorithm.

6. COMPLEXITY CONSIDERATIONS

The proposed method needs, in principle, many iterations
over a large number of parameter values because: (i) The
number of examined runs for every level in a particular stage
increases with the index value of the DCT coefficient being
processed. (ii) All stages, till the stage corresponding to the
last non-zero coefficient, in every block, need to be exam-
ined. (iii) A separate trellis has to be constructed for every
requantization step-size that we wish to examine. (iv) There
are several values of v at each stage that need to be examined.
(v) Several values of λ need to be tried (in a directed way)
before the total rate will match the constraint.

Note, however, that while the number of index values
(levels) to be examined at each stage seems to be large at
first sight, it is no so in reality. This is because the mean

value of the AC coefficients is typically in the range of 30-
50. Hence, if the initial quantization step-size is 6, then even
on the finest scale there are on average only about 5÷10 val-
ues to choose from. When the quantization step is increased,
we reach a single value very quickly.

As for searching over different values of λ , applying a
simple bi-section search, as in [1], requires on average about
3 iterations only.

6.1 Complexity Reduction Means

Here we present a number of ways to reduce the number of
calculations needed in the proposed Trellis optimization.
1. As mentioned above in (i), the number of examined runs
for every level in a particular stage increases with the index
value of DCT coefficient being processed. We have observed
that, practically, the number of level values that should be
considered for obtaining a rate reduction is actually not that
large. Moreover, if we consider choosing a run for a partic-
ular level v, the number of options to examine - runmax(v),
before getting to the maximum no. of bits in the VLC ta-
ble, Rmax = 24, is very small for all levels (except for level
values 1 and 2, for which there are 31 and 16 possible runs,
respectively). Thus, Eq. (7) can be rewritten as follows:

J(v, i) = min
{(

Jopt(v, i),Jopt(runmax(v), i)+λRmax
)}

+D(v, i) (10)

where,

Jopt(v, i) = min
run<runmax(v)

{J min(i− run−1)+

i−1

∑
j=i−run

D0( j)+λR(run,v)} (11)

and,

Jopt(runmax(v), i) = D0(i−1)+

min
run>runmax(v)

{J min(i− run−1) +
i−2
∑

j=i−run
D0( j)}

= Jopt(runmax(v)−1, i−1)+D0(i−1) (12)

To calculate Jopt(v, i), runmax(v) iterations are needed, while
runmax(v) is usually a small number. Jopt(runmax(v)− 1, i−
1) is known from the last stage, so no search needs to be done
to find Jopt(runmax(v), i). So, to get J(v, i), only runmax(v)+1
calculations need to be performed. Using Eq. (10), (11), (12)
instead of Eq. (7) does not affect the optimality of the solu-
tion, but reduces the number of calculations needed by up to
40% in our simulations.
2. Again, as mentioned above in (ii), all stages, till the stage
corresponding to the last non-zero coefficient in every block,
need to be examined. The simplification proposed here re-
sults in a sub-optimal solution but with only a slight reduc-
tion in performance. As mentioned in Section 4, it may be
useful, sometimes, to split a run-level pair into two smaller
ones. If no splitting is allowed, the trellis paths need to go
through stages defined by the initial non-zero coefficients
only. In typical MPEG-2 encoded blocks, about 70% to 90%
of the coefficients are zero, so that the computational com-
plexity reduction is very pronounced (may reach 60÷70%).
In our simulations, applying this simplification, resulted in a
PSNR reduction of just 0.07 dB.
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Figure 2: Average PSNR vs. rate for FOOTBALL sequence tran-
srated from 4Mbps into lower rates.

7. EXPERIMENTAL RESULTS

In this section we compare the performance of the pro-
posed scheme to several other transrating schemes. Because
of space limitations we report the results obtained just for
the video sequence FOOTBALL (in SIF 4:2:0 format, 45
frames). The sequence was encoded using a standard TM5
encoder at 4Mbps. This rate was reduced by transrating to
rates varying from 3 to 1Mbps. The average PSNR values ob-
tained by each of the following transrating scheme are shown
in Fig. 2:
1. ”Simple” requantization that uses TM5’s complexity

model to transrate each frame (denoted ’Sim’).
2. Lagrangian optimization that finds the optimal set of

quantization step-sizes for each frame (’Lag’), like in [1].
3. Proposed Trellis-based optimization (’Tr’).
4. Proposed reduced complexity Trellis-based optimization

(’TrNZ’), i.e., trellis paths go through initial non-zero
stages only, since no splitting of runs is allowed, as de-
scribed in 6.1, pt. 2.
The original video sequence and the decoded 4Mbps

video were also encoded to the desired bit-rate using a stan-
dard TM5 encoder. They are denoted as ’Enc’ and ’Re’, re-
spectively. It is seen from the Fig.2 that ’Tr’ outperforms
’Enc’ at all the rates by about 0.62 dB in average PSNR,
while the gain of ’Lag’ over ’Enc’ is only about 0.28 dB.
The difference in PSNR between ’Tr’ and ’Sim’ transcod-
ing is about 0.95 dB.’TrNZ’, which is sub-optimal but of
reduced complexity, suffers a loss of 0.07 dB as compared
to ’Tr’. For other video sequences we got similar results
with the proposed Trellis-based schemes, relative to the La-
grangian scheme, while the other methods show more signif-
icant variations, but always lower than the proposed Trellis-
based schemes. The upper graph in Fig. 3 shows the PSNR
for each frame in the FOOTBALL sequence for ’Tr’, ’Lag’
and ’Sim’ transrating schemes, for transrating from 4Mbps
to 2Mbps. The results of encoding the original sequence
(’Enc’) at 2Mbps is also added for comparison. The lower
graph in Fig. 3 shows the performances of ’Enc’, ’Re’ and
’Tr’.

Measuring complexity in terms of run-time, we obtained
in our implementation that: ’Lag’ runs 6 times slower than
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Figure 3: PSNR as function of frame number for FOOTBALL
sequence transrated from 4Mbps into 2Mbps.

’Sim’ transrating, and ’Tr’ runs 9 times slower than ’Lag’,
while ’TrNZ’ just 3 times slower than ’Lag’.

8. CONCLUSIONS

A Trellis-based Lagrangian optimization for MPEG-2 en-
coded video transrating is proposed. It is shown that by
extending the Lagrangian optimization of quantization step-
sizes only, by allowing the modification of quantized AC
coefficients, consistently results in better performance than
other known schemes, including even those obtained by en-
coding the original video sequence at the reduced rate with
a standard coder. The cost of the proposed scheme is in its
complexity. We have shown in this work ways for reducing
the complexity and are currently studying further means for
complexity reduction.
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