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ABSTRACT 

This paper proposes a new LMS/Newton algorithm for robust 
adaptive filtering in impulse noise. The new algorithm is obtained 
by applying the non-linear filtering technique and the robust 
statistic approach to the conventional fast LMS/Newton method. A 
robust method for estimating the required threshold parameters for 
impulse suppression is also given. Simulation results show that 
aside from retaining the advantages of the LMS/Newton algorithm 
such as low complexity and numerical stability, the new algorithm 
is more robust and effective in suppressing the adverse effects of 
the impulses.  

I. INTRODUCTION 

Adaptive filters have been widely used in communications, 
control, and many other systems in which the statistical 
characteristics of the signals to be filtered are either unknown a 
priori or, in some cases, slowly time varying.  Two commonly 
used families of adaptive filtering algorithms are based on the least 
mean squares (LMS) and the recursive least squares (RLS) 
algorithms.  The RLS-based adaptive algorithms are well known 
for their fast convergence speed, as compared with the LMS–based 
algorithms.  The convergence speed of the latter is usually very 
sensitive to the eigenvalue spread of the correlation matrix of the 
input signal.  The LMS-based algorithms, however, have a very 
low arithmetic complexity of O(N) (where N is the number of taps 
in the adaptive filter), as compared with  )( 2NO  for the 
conventional RLS algorithm.  Different approaches have been 
proposed to improve the convergence property of the LMS 
algorithm.  Interested readers are referred to ]4[]1[ − for various 
aspects of adaptive filters. 

One very efficient class of algorithms is the fast Newton 
algorithm ]7[]5[ − . The basic idea is to approximate the Kalman 
gain vector in the update of the weight vector of the adaptive 
algorithm.  In the fast Newton transversal filters (FNTF) [5] and 
LMS/Newton [6] algorithms, the input signal of the adaptive filter 
is modeled as a low-order auto-regressive (AR) process so that the 
Kalman gain vector can be efficiently determined.  By so doing, 
the FNTF [5] has a complexity of MN 52 + arithmetic operations, 
which is very close to that of the normalized LMS (NLMS) 
algorithm.  The LMS/Newton algorithm [6] is based on a similar 
concept and it was found to be more stable than the FNTF 
algorithm with a complexity of MN 62 + .  Since AR signal 
modeling has been found to provide a sufficiently accurate 
representation for many different types of signals, such as speech 
processing, it is expected the FNTF and the LMS/Newton 
algorithms will find applications related to the processing of 
speech signals, such as acoustic each cancellation described in [6] 
where the length of the required adaptive filter is very large.    

In this paper, an improved LMS/Newton algorithm for robust 
adaptive filtering in impulsive noise environment is proposed.   
Impulsive interference, which results from nature or man-made 
sources, can significantly affect the performance of linear adaptive 

filters and it represents an important problem in communications 
systems.  The proposed robust LMS/Newton algorithm is based 
on the robust statistics concept, where an M-estimate distortion 
measure ]10[]8[ − is minimized instead of the conventional least 
squares error.  Simulation results show that the proposed 
algorithm offers improved robustness over conventional 
LMS/Newton algorithm in impulsive noise environment.  The 
paper is organized as follows:  the conventional Fast 
LMS/Newton algorithm is described in section II. The new Robust 
Fast LMS/Newton algorithm is presented in Section III.  
Experimental and comparison results are given in section IV.  
Finally, conclusions are drawn in Section V.  

  
II. THE LMS/NEWTON ALGORITHM 
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Fig. 1.  System Identification Structure  

 
Without loss of generality, consider the system identification 

problem in Fig. 1.   The system input, )(nx , is passed through 
the unknown system to obtain the desired output )(0 nd .  
Simultaneously, it might be corrupted by additive interference 

)(nsη  and is fed to the adaptive filter to generate the 
estimate )(ny . )(0 nd  is assumed to be corrupted by background 
noise, modeling error and interference which can be integrally 
represented by )(0 nη . The resultant reference signal is denoted 
by )(nd .  The parameter vector of the unknown system and that 

of the adaptive filter are denoted respectively by *w  and )(nw .   
In the Newton algorithm, the weight update equation is given by 
 )()()()( nnndne wxT−=  (1) 

 )()(ˆ)()()1( 1 nnnenn xRww −⋅+=+ µ , (2) 

where )(ˆ 1 n−R  is the inverse of the estimated covariance matrix 
and µ  is the stepsize.  Both the FNTF and the LMS/Newton 

algorithms explore the structure of )(ˆ 1 n−R  when )(nx  is an 
M-th order AR process.  Further, if M is much smaller than N, 
then the computational complexity is similar to the LMS algorithm, 
while offering significant performance improvement.   More 
precisely, if the input can be sufficiently modeled as an M -th 
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order AR process, then )(ˆ 1 n−R  can be factored into the 
following form: 
 

)()()()(ˆ 111 nnnn M
T

M
−−−− = LDLR               (3) 

where  
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is an  ( NN × ) lower triangular matrix where )(, na ip  is the 
i -th coefficient of the p-th order backward predictor for x(n), and 

)(nD  is a diagonal matrix whose i -th element is the estimated 
power of the i -th backward prediction error.    It can be seen 
that the )1( +M -th through the N -th rows are shifted version of 
each other.   By extending the input and coefficient vector )(nx  
and )(nw :  

 T
E MNnxMnxn )]1(),...([)( +−−+=x , )4(  

 T
MNME nwnwn )](),...,([)( 1−+−=w . )5(  

the LMS/Newton algorithm can be written as 
  

)()()()( nnndne wxT−= , 

)()(2)()1( nnenn EE uww µ+=+ , 
)6(  

 )()()(~)()( 1
1

2 nnnnn ExLDLu −= . )7(  

where )(1 nL  and )(2 nL  are respectively  (N+M)-by-(N+2M) 
and N-by-(N+M) matrices whose rows are consecutive shifted and 
delayed coefficients of the M-th order forward and backward 
predictor ]1),...(),([ 1,, nana MMMM −  and )](),...(,1[ ,1, nana MMM  

[6].  Using the shifting property of )(nu and that 
of )()()( 1 nnn EE xLb = , it is possible to reduce the computational 
complexity to MN 62 + multiplications and additions.   The 
predictor parameters can be efficiently computed using a lattice 
predictor and the Levinson-Durbin algorithm. 
 

III. THE ROBUST LMS/NEWTON ALGORITHM 

Since the LMS/Newton algorithm in (6) and (7) is based on the 
LMS criterion, its performance will deteriorate considerably when 
the desired or the input signal is corrupted by impulsive noise.  
Nonlinear techniques are usually employed to reduce the hostile 
effects of impulsive noise on LMS-type of algorithms.  These 
include the order statistic least mean square algorithm (OSLMS) 
[11], the adaptive threshold nonlinear algorithm (ATNA) [12] and 
the Least mean M-estimate (LMM) algorithms, which are based on 
the concept of robust statistics. In the LMM algorithm, an least 
mean M-estimate distortion measure ))](([ neEJ ρρ =  is 
minimized instead of the least mean squares distortion measure 

)]([ 2 neEJ LS = , where  )(eρ  is a robust M-estimate function 
such as the Hampel’s three parts re-descending function as shown 
in equation (8) and Fig. 2. 

It can be seen that )(eρ  is an even real-valued function 
andξ , 1∆  and 2∆  are the threshold parameters used to control 
the degree of suppression of the outliers. The contribution of the 
error e to )(eρ  is reduced when its magnitude is increased 
beyond these thresholds.  There, the smaller the values ofξ , 1∆   
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Fig. 2.  The Hampel’s three parts re-descending M-estimate 

function. 
and 2∆ , the greater the suppression will be of the outliers.  These 
threshold parameters are usually estimated continuously, which 
will be discussed later.  ))](([ neEJ ρρ =  is therefore capable of 
smoothing out momentary fluctuation caused by the impulses.  
By setting the first-order partial derivatives of ρJ , with respect 

to )(nw , to zero, it was shown in [9] that optimal weight vector 
satisfies the M-estimate normal equation:  
 

ρρρ PwR =* , (9) 

where )()())((
1

)( iiieq T
n

i

n
i xxR ∑

=

= λρ
and  )()())((

1

)( iidieq
n

i

n
i∑

=

= xP λρ  

are the M-estimate autocorrelation matrix of )(nx  and the 
M-estimate cross-correlation vector of )(nd  and )(nx , 
respectively, and eeqeee ⋅=∂∂= )(/)()(' ρρ . Note that (9) is a 
nonlinear function of w  and iterative method is required to solve 
for the optimal solution.  When )(eρ  is chosen as the square 
function, (9) reduces to the conventional normal equation which is 
a system of linear equation.  The solution is given by 
 

PRw 1* −=LS . 
(10) 

In fact, the Newton adaptive filtering algorithm (2) is based on the 
following modification of (10): for a given initial weight vector w, 
the gradient vector is 
 PwRw 22 −⋅=∇ . (11) 

Multiplying both sides of (11) by 1
2
1 −R , one gets  

 
wRww ∇−= −1

2
1*

LS . )12(  

To reduce the effect of noise and modeling errors, a stepsize can be 
introduced to yield the following update equation for the Newton 
method:  
 

)(
1

2
1 )()()1( nnnn wRww ∇−=+ −µ . )13(  

In practice, both 1−R  and )(nw∇  have to be approximated.  In 

the LMS/Newton method, 1−R  is estimated by (3), while 

)(2
1

nw∇  is approximated by its instantaneous 
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gradient )()()}({ˆ 2
2
1

)(2
1 nnenen xww −=∇=∇ .  This yields the 

equation update in (2).   
For the M-estimate normal equation, we can approximate (9) 

locally as a quadratic function and it gives rise to a similar update 
as in (13), except that 1−R  should now be replaced by some 
estimate of 1−

ρR   and )}({ˆ 2
2
1

)(2
1 nen ww ∇=∇  should be 

replaced by the instantaneous gradient of the M-estimate distortion 
function, which is given by [8]: 
 

)()())(())}(({ˆ
2
1

2
1 nneneqneww x=∇=∇ ρ

ρρ
. )14(  

This will improve the robustness of the algorithm against impulse 
noise in the desired signal.  Since 1−

ρR  depends on the weight 

vector *
ρw  and its role is to improve the robustness against input 

impulse, we still employ 1−R  to retain the simplicity of the fast 
LMS/Newton algorithm.  Finally, we get the following robust 
LMS/Newton algorithm: 
 

)()()()( nnndne wxT−= , 

)()())((2)()1( nneneqnn EE uww ⋅+=+ µ , 
)15(  

 )()()(~)()( 1
1

2 nnnnn ExLDLu −= . )16(  
This robust LMS/Newton algorithm will reduce to the 

LMS/Newton algorithm when )(ne  is smaller than ξ .  When 
)(ne  is considerably larger thanξ , it will be treated as an outlier 

and will be suppressed.  When 2)( ∆>ne , it will be completely 
ignored.   

The threshold parametersξ , 1∆  and 2∆  can be determined 
by the method proposed in [8].  Basically, the distribution of the 
estimation error )(ne  is assumed to be Gaussian distributed and 
is corrupted with additive impulse noise. By estimating the 
variance of “impulse-free” component of )(ne , it helps to detect 
and reject the impulses in )(ne . According to [8], the probability of 

)(ne  greater than a given threshold hT  is  

 
)))(ˆ2/((})({)( nTerfcTnePn ehhrT δθ =>= ,  )17(  

where dxexercf
x

x∫
∞

−=
2

)/2()( π  is the complementary error 

function and )(ˆ neδ  is the estimated standard deviation of the 

“impulse-free” error.  Let })({ ξθξ >= nePr , 

})({ 11
∆>=∆ nePrθ  and })({ 22

∆>=∆ nePrθ  be the 

probabilities that )(ne  is greater than ξ , 1∆  and 2∆ , 
respectively. By appropriate choosing ξθ , 

1∆θ  and
2∆θ  

(i.e.-different confidence in distinguishing the outlier from an 
ordinary sample with very high amplitude), the values ofξ , 1∆  
and 2∆  can be determined.  For ξθ , 

1∆θ  and
2∆θ  equal to 

0.05, 0.025, 0.01, respectively, the values ofξ , 1∆  and 2∆  are 

respectively )(ˆ96.1 neδ , )(ˆ24.2 neδ  and )(ˆ576.2 neδ .   

The robust estimation of )(ˆ neδ  can be effectively implemented 
by 
 

))(()1()1(ˆ)(ˆ
1

22 nAmedcnn eeeee λδλδ −+−= , )18(  

where ))1/(51(483.11 −+= wNc is a finite sample correction 
factor, med(.) stands for median 
operator, )}1(),...,({)( 22 +−= we NnenenA , eλ  is the forgetting 
factor and wN  is the length of the estimation window. 
   To suppress the impulses in the input signal, we make use of 
the lattice predictor in (7). The one-step ahead prediction of the 
input signal )1(ˆ +nx  and the error )(nep  can be written as 

∑
−

=
+−=+

1

0
1 )()()1(ˆ

M

i
ii nbnknx , ∑

−

=
+++=

1

0
1 )()()1()(

M

i
iip nbnknxne  

(19) 
The threshold parameters and the variance of )(nep , )(ˆ2 n

peδ , 

can be computed by a similar parameter estimation technique 
described above with )(ne , )(ˆ2 neδ , wN  and eλ  replaced, 

respectively, by )(nep , )(ˆ2 n
peδ , pN  and pλ . If )(nep  is 

greater than the estimated threshold, an impulse is said to occur in 
the input signal, and it will be replaced by its predicted value, i.e., 
the input to the adaptive filter is 
now )1(ˆ)))((1()1())(()1(~ +−++=+ nxneqnxneqnx pp . Where 

)(⋅q is the weighting function defined earlier, and )1(ˆ +nx  is the 
predicted value of )1( +nx  in (19).  Since the suppressing or 
filtering of the impulses in )(nx is derived from the lattice 
predicting process, no additional pre-processor is required.  
 

IV SIMULATION RESULTS 

We now evaluate the performance of the proposed algorithm 
using computer simulation.  For the sake of comparison, the order 
of the unknown system is set to be 30 with the coefficients being 
randomly generated as in [6]. The AR process is with coefficients 
[1 -0.65 0.693 -0.22 0.309 -0.177] and the normalized unit power.  
The signal-to-noise ratio at the system output is given 
by )/(10log10 22

0 gdSNR δδ= , where 2
0dδ  is the variance of the 

output of the unknown system. The interference 
)()()()()()(0 nnbnnnn wgimg ηηηηη +=+=  is chosen as a 

contaminated Gaussian (CG) noise with )(ngη  and )(nwη  

being i.i.d. zero mean Gaussian processes with variance 2
gδ  

and 2
wδ , respectively. )(nb  is an i.i.d. Bernoulli random process 

assuming a value of either 1 or 0 with occurrence probabilities 
rr pnbP == )1)((  and rr pnbP −== 1)0)(( .  The strength and 

frequency of the impulsive noise are specified by the 
ratio 22 / gwrim pr δδ= .  The parameters in our experiment 

are: dBSNR 30= , 005.0=rp , and 100=imr . For illustration 
purpose, the interference noise )(0 nη  is an additive Gaussian 
noise from time 1=n to 2000=n  and 2801 to 7000. From 

2001=n to 2800, the CG noise is applied. In order to visualize 
more clearly the effect of impulses in the desired signal, the 
locations of impulses are respectively fixed at 2620,2253=n but 
the amplitudes of impulses are independent variables governed 
by )(nwη . Similarly, for the same reason one impulse is added to 
the input signal of the filter at 5000=n . The threshold parameters 

are obtained according to (17): )(ˆ96.1 neδξ = , )(ˆ24.21 neδ=∆  

and )(ˆ576.22 neδ=∆ . The forgetting factor eλ , pλ  are set equal 
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to 0.99, and the window length wN , pN  are both chosen to be 
14.  

Fig. 3. MSE results versus time n 

  (1) 
 

           (3) 

           (2) 
 

           (4) 
Fig. 4. Respective MSE results versus time n. (1)Robust Fast 
LMS/Newton; (2)Fast LMS/Newton; (3)LMM; (4)QR-RLS 

Fig. 5. MSE results versus time n upon system sudden change. 
(1)Robust Fast LMS/Newton; (2)Fast LMS/Newton; (3)LMM; 
(4)QR-RLS 

Four algorithms, Robust and conventional Fast LMS/Newton, 
LMM, QR-RLS are tested. The MSE results averaged over 100 
independent runs are plotted in Fig.3 as a whole and in Fig.4 
respectively. It can be seen that the QR-RLS algorithm has the 
fastest initial convergence speed and the two Fast LMS/Newton 
algorithms also exhibit much faster initial convergence speed as 
compared to the LMS-based LMM algorithm. Fast LMS/Newton 
and QR-RLS, as being conventional algorithms, are both not 
robust to any of the impulses in either the desired or the input 
signal. In contrast, the LMM and our new robust Fast 
LMS/Newton algorithms can effectively suppress the impulses in 

both forms, and particularly, the latter reveals better performance 
than the former with respect to combating the impulse in input 
signal. We next examine the response speed of these algorithms to 
the sudden system change. With all the other parameters 
unchanged, the system is switched to - w from w at n=5000. The 
results shown in Fig. 5 illustrate that with the QR-RLS algorithm 
being the fastest of all, the new algorithm, together with the fast 
LMS/Newton algorithm, have a much faster convergence speed 
than the LMM algorithm. All the above simulation results indicate 
that aside from having a fast convergence behavior and a low 
request for computational complexity, the new algorithm is very 
robust to the impulse noise in both the desired and the input signal. 
Further results concerning its convergence analysis will appear in 
our future work.  

V CONCLUSION 

In this paper, a new LMS/Newton algorithm for impulse 
suppression is presented. Based on the non-linear filtering 
technique and the robust statistic approach, the new algorithm is 
developed with the AR-process input assumption. Besides 
possessing a low computational complexity, it also exhibits more 
robust and effective performance in suppressing the impulses in 
both desired and input signals in simulation results as compared to 
the convention fast LMS/Newton algorithm. So it may be a good 
alternative to the latter for the applications in impulse noise 
environment.  
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