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ABSTRACT 

This paper deals with the parametric modelling of three-
dimensional (3-D) stochastic processes. Based on the 3-D 
Wold-like decomposition theory, any 3-D discrete homoge-
neous process can be represented as a sum of three mutually 
orthogonal components: a completely non deterministic, a 
“remote past” type deterministic and an evanescent compo-
nent. The evanescent component can be further decomposed 
into two orthogonally components called evanescent of type 
1 and evanescent of type 2. The aim of  this paper is to 
propose a new parametric models able to describe both the 
spectral support and spatial structure of each component. 

1.� INTRODUCTION  

The Wold decomposition theorem for two-dimensional (2-
D) stochastic processes [1, 3] stipulates that a homogeneous 
stochastic process can be decomposed into two orthogonal 
components, named deterministic field and completely non-
deterministic (CND) one. Moreover, it has been shown that 
the deterministic is further decomposed into mutually or-
thogonal half-plane deterministic field and generalized eva-
nescent components. Thus, in the 2-D case, in tackling the 
problem of texture analysis, Francos et al. [4], have pro-
posed explicit parametric models of each component. These 
models have been applied to segmentation and indexation of 
textured images [5]. A main challenge in Wold- based image 
modelling is to develop an efficient and robust Wold de-
composition algorithm. Some methods have been proposed 
in the literature for extracting the three components from 
textured images [6, 9]. 
The 2-D Wold decomposition overcomes the fact that the 
classical parametric AR like model cannot totally take into 
account all the information contained in some structured 
textured image. Indeed, the 2-D AR model permits only to 
model homogeneous field having absolutely continuous 
spectral density. However, the information concerning the 
orientation or periodical behaviour is provided by the eva-
nescent component [8], [10]. 
Recently, in [11] the authors describe and analyse the theo-
retical structure of multidimensional Wold decomposition 
with respect to lexicographic-type orders for homogeneous 
discrete process. Especially, in the 3-D case, which is impor-
tant for applications to textured image blocks processing, 
they showed that, the evanescent component can be decom-
posed into two orthogonally sub-evanescent components, 

with spectral measures of a special type. Our aim in this 
paper is to propose a new parametric models able to describe 
both the spectral and spatial caracteristics of these 
components. 
The paper is organized as follows: in Section 2 we present 
some definitions and notations for the 3-D random field. In 
Section 3 we briefly recall the 3-D Wold-like decomposition 
theory. In Section 4 we present the 3-D texture model and 
illustrative synthetic textures examples of each Wold com-
ponent. Finally, in Section 5 we provide our conclusion. 

2.�  NOTATIONS AND DEFINITIONS 

Consider a zero mean real valued 3-D stationary stochastic 

process { }3),,();,,( Ζ∈= WQPWQP\\  and let +  be the 

Hilbert space spanned by the family { }),,( WQP\  and de-

noted by  

 { ( ) ( ) }3,,,,, =WQPWQP\SV+ ∈= . 

For a fixed total order ≤  on 3= , define the space  ),,(
���+  

called the past of the element ),,( WQP\ , i.e. the subspace of  

+  given by 

 ( ) ( ) ( ){ } +WQPONMONM\VS+ ��� ⊂<= ,,,,/,,),,( . 

We call ),,( WQPX  the innovation of the process \  at the 

point ),,( WQP , i.e. the difference between ),,( WQP\  and its 

orthogonal projection ),,( WQP\
�

 on its past ),,( ���+ : 

 ( ) ( ) ( )WQP\WQP\WQPX ,,,,ˆ,, −= . 

To define the concepts of CND and evanescent process, 
consider the following subspaces: 
• 	�

�+ , generated by the innovations field, i.e. 

 { ( ) ( ) }3,,,,, =WQPWQPXSV+ ����� ∈=  

• det+ , the orthogonal complementary of � ���+ , i.e. 

  ���
�+++ Θ=det  

429



• ∞−
�

, the subspace spanned by the intersection of all the 

Hilbert space ),,( ����
, and called the remote past space,  

 ),,(
),,( 3

�� !�� ++
∈

∞− = � .  

2.1� Definitions  

A 3-D homogeneous stochastic process \  is respectively 

called: 

• Non–deterministic if 0]),,([ 2 >"#$%&
 for at least one 

),,( '()  i.e. if the process of its innovations doesn’t van-
ish, and deterministic otherwise. The symbol [ ](  de-

notes the expected value. 
• Completely non-deterministic if *�+�,--

=  i.e. the space 

of process coincides with the space generated by its in-
novations field. 

• Deterministic of ∞−+  type (or “remote past” process) if 

{ }0=.�/
0+  and ∞−= ++  i.e. its space coincide with 
its remote past space. 

• Evanescent field if  { }0=1�2
3+  and  { }0=∞−+  i.e. it 

has neither innovations nor remote past. 

Let us recall that a 3-D homogeneous process is CND if and 
only if its spectral measure is absolutely continuous and its 
density is log-integrable [1]. 

3.� THE 3-D WOLD-LIKE DECOMPOSITION 

In [11] the authors present and analyse the structure of n-
dimensional Wold decompositions theory for n-D 
homogeneous discrete process with respect to a fixed total 

order on 
4

= . In the particular  case of three dimensional 
process (n = 3) they state the following theorem: 

Theorem: Let { }),,( WQP\\ =  be a 3-D homogeneous sto-

chastic process. There is a unique orthogonal decomposition 
5678 ++= , 

such that Z  is a CND, K  is remote past type deterministic  
and  H  is evanescent processes. 

Moreover it is shown in [11] that the evanescent component 
itself can be decomposed into two orthogonal components 
called the type 1 and type 2 evanescent ones: 

 21 HHH += . 

Consequently, any 3-D homogeneous random field can be 
uniquely represented as follows: 

 21 HHKZ\ +++= . (1) 

In addition, if  9) , :) , ;) , 
1
<)  and 

2
=)  are  the  spectral 

measures of  \ , Z , K , 1H , and  2H  respectively, then >)  

can be uniquely represented as a sum of mutually singular 
measures: 

 
21 ??@AB CCCCC +++=  (2) 

where D)  is absolutely continuous , E) , 
1
F) , and 

2
G)  

are singular with respect to the Lebesgue measure. Thus, the 
spectral measure of each deterministic component is concen-
trated on a set of Lebesgue zero in the frequency space. 
From (2) we conclude that the decomposition of the com-
pletely nondeterministic and the deterministic components 
of a 3-D regular homogeneous random field can be achieved 
by performing a spectral Lebesgue decomposition, i.e. by 
separating the singular and the absolutely continuous com-
ponents of the spectral measure of the random field. 
The decomposition in (1) can be in fact produced for any 

total order on 3= . In this paper, we are particularly inter-
ested by the spatial structure and spectral support of evanes-
cent fields relatively to one fixed total order. 

4.�  THE 3-D TEXTURE MODEL 

The 3-D texture field is assumed to be a finite realization of 
a 3-D homogeneous random field with a mixed spectral dis-
tribution. Thus, in the context of texture modelling, the or-
thogonal property of the three components in (1) leads to 
independent models of each one separately. 

4.1� Evanescent field of the type 1 

The spectral distribution function (SDF) of this evanescent 
component  is a linear combination of  separable measures 

(.,.,.)
1
HG)  given by  

 )(),(),(),,( 121 ηλ=ηνω IJ G)YZGYZIG)  (3) 

where 
K

)1 , is a one-dimensional singular measure, and 

),( YZI  is a two-dimensional spectral density function. It is 

the product of a 2-D spectral density function and a one-

dimensional singular spectral mesaure 
K

)1 . In other words, 

the spectral distribution function associated whith each 
evanescent field of the type 1 is absolutely continuous in 
two dimensions and is singular in the orthogonal one. For 
practical applications we can exclude singular-continuous 
spectral distribution functions from the framework of our 

treatment. Thus, the distribution 
K

)1  can be approximated 

by a linear combination of 1-D Dirac “functions”. 
Consequently, the evanescent component of type 1 can be 
modelled by a linear combination of separable models, 
given by the product of 2-D completely nondeterministic 
process in two dimensions and 1-D sinusoidal in the or-
thogonal dimension as follows: 

 [ ( ) ( ) ])2sin(,)2(cos,),,(
1

1
1 WYPQWWYPQVWPQH LLL

M

L L π+π= ∑
=

 

where { }(.,.)NV ,  { }(.,.)OW  are mutually orthogonal 2-D CND 

processes of identical autocorrelation function. They can be 
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modelled as a 2-D AR models. PY  is the 1-D frequencies of 

the ith elementary evanescent component of type 1. 
In Fig 1 (a), we show the 3-D texture synthesized by this 
model with one component. Visualy this texture is random 
looking in two dimensions and structured in the third 
orthogonal dimension. The spectral measure  of the 3-D 
evanescent field of type 1 is supported by parallel planes in 
the frequency space as shown in Fig. 1 (b). 

4.2� Evanescent field of the type 2 

The SDF (.,.,.)
2
QG)  of an 3-D evanescent field of type 2 is 

given by 

 ),()()(),,( 212
ηλ=ηνω YG)ZGZJG) RS  

where T)2 , is a two-dimensional singular measure and 

)(ZJ  is a one-dimensional spectral density function. It is 

absoluetly continuous in one dimension and is singular in 
two other orthogonal dimensions. The 2-D singular spectral 

distribution function noted U)2  can be approximated by a 

linear combination of 2-D Dirac “functions”. Then, the 3-D 
evanescent field of type 2 can be modelled as a countable 
sum of randomly 2-D sinusoids in two dimensions, all 
modulated by 1-D completely nondeterministic process in 
the orthogonal dimension: 

 [ ( ) ( ) ])(2sin()(2(cos),,(
2

1
2 VWXYVVWZXY[VWY\ ]]]]]

^
] ] η+π+η+π= ∑
=

 

where 2,  is the number of  components, ),( __ ην  is the ith 2-

D frequencies, { })(QV `  and { })(QW a  are mutually orthogonal  

1-D CND processes of identical autocorrelation function. 
A 3-D texture synthesized by this model, where { })(QV b  and 

{ })(QW a  are modelled by 1-D AR, is presented in Fig 2 (a). It 

is structured in two dimensions and random looking in the 
third orthogonal dimension. The corresponding spectral 
measure is carried by parallel lines in the frequency space as 
in Fig.2 (b). 

4.3� Harmonic component 

The spectrum support of the remote past type deterministic 
field K , with respect a fixed total order, has several possible 
geometrical forms. Then, its spectral distribution function 
cannot be easily approximated and its parametric modelling 
is difficult. To alleviate this problem, a generalized Wold 
decomposition is necessary. This decomposition has been 
developed recently in [12] with respect to all lexicographic-

type orders in 3= . 
However, one of the remote past type deterministic proc-
esses is the harmonic field represented by  

 [
)](

)(),,(
1

cccc

d
c cccc

efghijlk im
efghinpoZqnegir

µ++

+µ++= ∑
=

 

where the triplet ),,( sss YZ µ  are the 3-D frequencies and 

the coefficients { }ttvuw
,  are real valued, mutually orthogo-

nal random variables with 222 ][][ xxx '(&( σ== . 

In Fig 3 (a) we show the 3-D texture synthesized by a 3-D 
harmonic model with two components. This model 
generates periodic textures in all directions. The support of 
the corresponding spectral density function contains four 
isolated points as shown in Fig 3 (b). 

4.4� Completely nondeterministic component 

Since the spectral measure  y)  is absolutely continuous 
with respect to the Lebesgue measure, the CND component 
can be modelled by a 3-D autoregressive model (3-D AR) 
given by the relationship 

 ∑
∈

+−−−= z{|} WQPXOWNQMPZONMDWQPZ
),,(

),,(),,(),,(),,(

where, ( ){ }WQPX ,,  is the 3-D white innovations field de-

scribed in section  2, and  '  is a subset of 3=  called the 
support of the AR model. That means that a pixel ),,( WQP  is 

a weighted sum of its neighbours. Depending on the form of 
this neighbour, two causal regions of support have been de-
fined: the quarter space (QS) and the non symmetrical half 
space (NSHS). In the case of a QS support, the model is 
given by 

 

                                                                                 )0,0,0(),,(
0 0 0

321,,

321

1

1

2

2

3

3

321
),,(),,( ),,(

≠
= = =

∑ ∑ ∑ +−−−−=
~~~

�
~

�
~

�
~ ~~~ ����������������  

where, the coefficients { }
321 ,, ���D  are the transversal model’s 

parameters and the triplet ),,( 321 SSS  denotes the model 

order. This class of models generate the random purely 
unstructured 3-D textures as in Fig 4. 

5.� CONCLUSION 

This paper is the sequel to [11, 12] where a 3-D Wold-like 
decomposition theory is developed. Based on this theory, we 
have proposed new explicit parametric models of each Wold 
component. These models will be employed for modelling, 
analysis, synthesis of a wide variety of 3-D homogeneous 
textures types found in natural image blocks. Indeed, from 
the illustrative synthetic textures examples presented here, 
we notice that the perceptual characteristics of the resulting 
mutually orthogonal components can be described as “ran-
domness” for the purely non deterministic, “periodicity in 
all directions” for the harmonic field and “periodicity in 
particular directions” for the evanescent components. How-
ever, a decomposition algorithm for extracting all compo-
nents from a natural 3-D texture is needed for practical ap-
plication. 
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FIGURES 

       

  (a)    (b) 
Figure 1: (a) the (120th, 100th, 90th) slices from a 3-D syn-
thesized textures by evanescent field of type 1 with one 
component. 
(b) : Spectral representation by Fourier magnitude. 

      

 (a)    (b) 
Figure 1: (a) the (120th, 100th, 90th) slices from a 3-D syn-
thesized textures by evanescent field of type 2 with one 
component. 
(b): Spectral representation by Fourier magnitude. 

     
 (a)    (b) 
Figure 3: (a) the (120th, 100th, 90th) slices from a 3-D syn-
thesized textures by harmonic field with two components. 
(b): Spectral representation by Fourier magnitude. 

      

 (a)    (b) 
Figure 1: (a) the (120th, 100th, 90th) slices from a synthe-
sized textures by a Gaussian 3-D QSAR model. 
(b): Spectral representation by 3-D Fourier magnitude. 
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