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ABSTRACT
This paper introduces a family of criteria dedicated to

blind SISO equalizers. These criteria are based on Alpha-
bet Polynomial Fitting (APF), and remind the well-known
Constant Modulus Algorithm (CMA) criterion, and encom-
pass the Constant Power Algorithm (CPA). Two APF-based
algorithms have been implemented in block form for QPSK
and QAM16 modulated inputs. Block implementations are
indeed more efficient for short data records, and allow the
direct computation of the optimal step size in a gradient de-
scent, as shown in the paper. Finally, APF-QPSK and APF-
QAM16 performances are compared with MMSE solutions
for various data block lengths.

1. INTRODUCTION

One of the main advantages of blind techniques is that
training sequences are not required. By deleting pilot se-
quences, one can thus increase the transmission rate. That’s
why Blind Equalization schemes have been the subject of in-
tense interest since the work of Sato [9] and Godard [7].

Our paper is dedicated to Single-Input Single-Output
(SISO) equalizers. This is not restrictive, i.e. the same cri-
teria can be used with MIMO channels, since sources can
be extracted one by one with a deflation approach [5][10];
this also allows to write a descent algorithm as a fixed point
search [1].

This paper is organized as follows. In section 2, we in-
troduce the SISO blind equalization problem; model and no-
tations are also included. Then, in section 3, we describe
the family of criteria based on Alphabet Polynomial Fitting
(APF); assumptions and definition of contrast criteria are
also given in this section. Practical algorithms, using an
optimal step size gradient descent, are implemented in sec-
tion 4. Finally, comparisons of performances of APF equal-
izers with Minimum Mean-Square Error linear equalizers
(MMSE-LE) are presented in section 5.

2. MODEL AND NOTATIONS

Throughout the paper, (T) stands for transposition, (H)
for conjugate transposition, (∗) for complex conjugation, and
 =

√
−1. Vectors and matrices are denoted with bold low-

ercase and bold uppercase letters respectively, I stands for
identity matrix. Moreover, let H be a set of filters, S the set
of processes and T the subset of H of trivial filters [2].

In the field of digital communications, we consider base-
band SISO observation model

y(n) =

K∑

k=1

ckx(n − k + 1) + ρw(n) (1)

where x(n) denotes the useful unknown sequence, ck the
channel impulse response, y(n) the received sequence, w(n)
the unit variance additive noise and ρ a parameter intro-
duced in order to control the Signal to Noise Ratio. The
blind equalization problem consists of finding a LTI filter,
f = [f1, . . . , fL]T, in order to retrieve the input sequence
solely from the observation of the output sequence of the un-
known LTI channel c = [c1, . . . , cK ]T. In other words, we
search fl, with 1 ≤ l ≤ L, such that

z(n) =

L∑

ℓ=1

fly(n − l + 1) (2)

yields a good estimate of the input sequence x(n). The signal
recovered can be delayed by a filter λ, so that c ⋆ f = λ,
where ⋆ is the convolution operator. When λ is of the form

λ = [0, . . . , 0
︸ ︷︷ ︸

p−1

, λ, 0, . . . , 0
︸ ︷︷ ︸

L+K−1−p

]T (3)

then it belongs to the set of trivial filters [2], i.e. λ ∈ T .

3. POLYNOMIAL CRITERIA

The main assumption in blind equalization is the inde-
pendence between successive symbols. Thus, we consider
the following hypotheses:
• H1: Source x(n) is a zero-mean random process, with

unit variance.
• H2: Source x(n) belongs to a known finite alphabet A

characterized by the d distinct complex roots of a poly-
nomial Q(x) = 0. For instance, a discrete PSK-q input is
characterized by roots of Q(x) = xq − 1. Table 1 gives
polynomials Q(x) for PSK-q and QAM16 modulations.

• H3: Source x(n) is stationary up to order r, r ≥ q − 1:
the order-r marginal cumulants,

Cs
p(x(n)) = Cum{x(n), . . . , x(n)

︸ ︷︷ ︸

p

, x∗(n), . . . , x∗(n)
︸ ︷︷ ︸

s=r−p

}

(4)
do not depend on n.
Moreover, for PSK-q modulations, elements of the com-

plex constellation satisfy xq = 1. As a consequence,
E{xq} = 1 but E{xm} = 0,∀m < q. We shall say that
x is circular up to order q − 1, but non circular at order q.

Now, let us remind the definition of contrast criteria:
Definition 1: An optimization criterion, J(f ; z), is referred
to as a contrast, defined on H ×H · S, if it enjoys the three
properties below [2]:
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Modulation A Q(x)

PSK-q {e2kπ/q}|k∈0,...,q−1 xq − 1

QAM16 [{±1,±3}, {±,±3}]
∑4

k=0 αkx4k

α0 = 5625/256, α1 = 12529/16, α2 = −221/8,
α3 = 17, α4 = 1.

Table 1: Polynomials characterizing PSK-q and QAM16.

P1. Invariance: The contrast should not change within the
set of acceptable solutions, which means that ∀z ∈ H·S,
∀f ∈ T then J(f ; z) = J(I; z).

P2. Domination: If sources are already equalized, any filter
should decrease the contrast. In other words, ∀z ∈ S,
∀f ∈ H, then J(f ; z) ≤ J(I; z).

P3. Discrimination: The maximum contrast should be
reached only for filters linked to each other via trivial
filters: ∀z ∈ S, J(f ; z) = J(I; z) ⇒ f ∈ T .

Considering discrete inputs and SISO channel, one can
blindly equalize it thanks to the polynomial criterion below:

Theorem 1: The criterion

JAPF (f , z) = −
∑

n

|Q(z(n))|2 (5)

is a contrast under hypotheses H2 and H3.

The proof of the theorem needs the following lemma:

Lemma 2: Let A = {xn, 1 ≤ n ≤ N} be a given
finite set of complex numbers not reduced to {0}, and
{ck, 1 ≤ k ≤ K} non zero complex coefficients. Then, if
∑K

k=1 ckxσ(k) ∈ A, for all mappings σ, not necessarily in-
jective, from {1, . . . ,K} to {1, . . . , N}, only one component
ck is non zero.

The proof of lemma 2 is rather long [4] and is not given
due to lack of space. In a few words, c is shown to be triv-
ial. The idea is to prove that a non trivial vector c generates
symbols that may lie outside the convex hull of alphabet A.

Now, let us prove that JAPF enjoys the three properties
of a contrast:

Proof.
• Property P1: for any trivial filter λ ∈ T , we have

−JAPF (λ; z) =
∑

n |Q(λz(n + τ))|2, with τ ∈ Z,
λ ∈ C. Because of the sums, this can also be simply
written as −JAPF (λ; z) =

∑

m |Q(λz(m))|2. If z is
in S, then z(m) belongs to A, and so is λz(m). Thus
Q(λz(m)) = 0.

• Property P2: since
∑

n |Q(y(n))|2 ≥ 0, JAPF is larger
than or equal to

∑

n |Q(x(n))|2, because the latter is
null when x(n) ∈ S. We have indeed −JAPF (f ;x) ≥
−JAPF (I, x).

• Property P3: we must show that if we have the equality∑

n |Q(y(n))|2 = 0, then λ is trivial. Denote y(n) =∑

k ckx(n− k), with x(n) ∈ A, and where ck define the
kth component of filter c. Then we have ∀n,Q(y(n)) =
0. We thus have that Q(

∑

k ckz(n−k)) = 0. We are un-
der the conditions of lemma 2, and we may conclude that
a single ck is non zero. In addition, this ck is necessarily
in C since ckz must be in A for any z ∈ A. By proceed-
ing in the same way for every y(n), we end up with an
impulse response c having only one non zero entry.

♦
Criterion (5), also named Alphabet Polynomial Fitting, is

based only on the modulation used for the transmission of
the input sequence. Hence, we obtain a set of polynomial
criteria dedicated to each modulation, in the presence of a
perfect synchronization.

As mentioned in section 1, it is possible to use a deflation
approach for equalizing mixtures from outputs of a MIMO
channel. If all signals transmitted use different modulations,
then it could be interesting to extract only one signal of the
mixture thanks to the knowledge of its alphabet. For this,
one can apply an APF criterion on the observations in order
to extract the suitable signal.

If PSK modulations are used in the transmission scheme,
then criteria JAPF are similar to the Constant Power Algo-
rithm (CPA) described in [3] since they are reduced to the
form J(f) = ‖z(n)q − d(n)‖2. In fact, all PSK-q modu-
lations can be characterized with d(n) and q as mentioned
in [3]. Nevertheless, contrary to APF algorithms, CPA is
not able to equalize signals with amplitude modulations like
QAM16. Moreover, one can combine criteria thanks to a
simple theorem:

Theorem 3: If Jk(z) are contrasts defined on H · Sk, and
{ak} are strictly positive numbers, then J(z) =

∑

k akJk(z)
is a contrast on H · ⋃k Sk.

Proof. Property P2 is obtained immediately, because all
terms are positive: J(z) =

∑

k akJk(z) ≤ ∑

k akJk(x) =
J(x). If equality holds, then

∑

k ak[Jk(x) − Jk(z)] = 0,
which is possible only if every term vanishes because they
are all positive. Thus Jk(z) = Jk(x),∀k. But x ∈ Sk for
some k, by hypothesis. And since Jk is a contrast, one can
conclude that z = λ ⋆ x, for some trivial filter λ of H. This
proves the theorem. ♦

Thus, by combining JAPF and JCM , one obtain new
contrast criteria.

4. OPTIMAL STEP SIZE DESCENT

The usual practice in SISO and deflation cases, is to run
a gradient descent:

v = f(k) + µg(k);f(k + 1) = v/‖v‖ (6)

where g(k) denotes the equalizer tap vector at iteration k,
g(k) the gradient of JAPF calculated at f(k), and µ the
step size. Most iterative algorithms run with a fixed step,
which performs poorly when the criterion contains many sad-
dle points. Even if the step size is adjusted like in quasi-
Newton algorithm, it does not improve anything since the it-
erations can stay a long time in the neighborhood of a saddle
point and then suddenly burst out far away from the attrac-
tion basin. One can improve significantly the convergence
time with an optimal step size calculation. In fact, criterion
JAPF is a rational function in the fl’s. It is also a rational
function in variable µ since JAPF (f(k) + µg(k)) describes
the same criterion. As a consequence, all its stationary points
can be explicitly computed as roots of a polynomial in a sin-
gle variable.

Now, we can rewrite (2) in a compact form

z(n) = f Tyn (7)
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where yn = [y(n), y(n− 1), . . . , y(n−L+1)]T denotes the
observation vector. Hence, we obtain the criterion

JAPF (f) = −
∑

n

Q(f Tyn)Q(yn
Hf∗). (8)

Then, the gradient vector g is

g = −
∑

n

ynQ′(f Tyn)Q(yn
Hf∗) (9)

where the function Q′(z) denotes the derivative of the poly-
nomial function Q(z).

Now, we consider JAPF as a rational function of µ by
substituting z(n) = (f + µg)Tyn in (8):

JAPF (µ) = −
∑

n

Q((f + µg)Tyn)Q(yn
H(f∗ + µg∗)).

(10)
Then, take its derivative with respect to variable µ:

∂JAPF (µ)

∂µ
= −

∑

n

∂Q((f + µg)Tyn)

∂µ
Q(yn

H(f∗ + µg∗))

−
∑

n

∂Q(yn
H(f∗ + µg∗))

∂µ
Q((f + µg)Tyn).

It suffices to eventually plug back the roots of this derivative
into criterion JAPF (µ), and to pick up the optimal step size
µ(k) for the gradient descent, i.e. the root that maximizes
criterion JAPF (µ). Of course, all this also applies to JKMA

ans JCMA.

5. NUMERICAL ALGORITHMS

Two algorithms have been implemented in block form for
QPSK and QAM16 modulated signals. Their performances
are then compared with Minimum Mean-Square Error linear
equalizers’ (MMSE-LE). The mean-squared error (MSE) for
such equalizers is given by

σ2
MMSE−LE = min

f
E{|x(n) − z(n)|2} (11)

where E{.} denotes the expectation. We use the MSE cri-
terion because it does not ignore noise enhancement. In-
deed, the optimization of MMSE-LE filters compromises be-
tween eliminating intersymbol interference (ISI) and increas-
ing noise power. From criterion (11), we obtain the finite
length impulse response (FIR) of the MMSE linear equalizer
[8]

fMMSE = arg min
f

‖f
Tyn − x(n)‖2 (12)

with closed-form solution fMMSE = R∗

xyR−1
yy , where the

output covariance matrix is defined as Ryy = E{ynyn
H},

and the cross-correlation matrix as Rxy = E{xn−∆yn
H}.

Since ∆ has little consequence when the equalizer length L

is long, we can fixed it to ∆ =

⌈

L+K−1
2

⌉

, i.e. center of the

impulse response of the global system (channel and equal-
izer). Correlation matrices have more specific expressions

Rxy = C[0, . . . , 0
︸ ︷︷ ︸

∆−1

, σ2
x, 0, . . . , 0

︸ ︷︷ ︸

L+K−1−∆

] (13)

and
Ryy = σ2

xCCH + ρ2I (14)

where σ2
x and ρ2 are variances of input sequence and gaus-

sian noise respectively, I denotes the L × L identity matrix
and C the L × (L + K − 1) block Toeplitz matrix

C =








c1 c2 · · · cK · · · 0

0 c1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
0 0 · · · · · · cK−1 cK








. (15)

In the following, we compare performances of APF-
QPSK and APF-QAM16 algorithms for different Signal to
Noise Ratio (SNR) and with various data block lengths.

5.1 APF-QPSK algorithm

The APF-QPSK algorithm has been tested on complex
channels of length K = 5, with unit variance QPSK white
processes. For each randomly generated channel, blocks
of noisy observations are filtered according to in (1). We
have tested APF-QPSK on random channels with data block
lengths of 400, 800, 1200 and 1600 symbols. Since chan-
nels’ coefficients are Gaussian distributed, we compute the
MSE obtained with MMSE-LE in order to choose candidate
channels for testing APF algorithms, i.e. invertible channels.
The length-20 equalizers returned by the algorithm are then
tested with a sequence of 1600 symbols in order to compute
the Symbol Error Rate (SER). With 75 random channels, the
minimal resolution is (1600 ∗ 75)−1 = 8, 3.10−6. Figure 1

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

S
ym

bo
l E

rr
or

 R
at

e

Blind APF−QPSK

Signal to Noise Ratio (dB)

APF (400 symb.)
APF (800 symb.)
APF (1200 symb.)
APF (1600 symb.)
MMSE−LE

Figure 1: Performances of blind APF-QPSK equalizers with
400, 800, 1200, and 1600 symbols with K=5 and L=20.

shows the average of the 75 trials. This figure shows that
above 23dB, APF-QPSK algorithm works well with 1200
symbols, whereas the SER obtained with 1600 symbols is
close to the SER of MMSE-LE over the whole SNR range.

5.2 APF-QAM16 algorithm

We have tested the APF-QAM16 algorithm like in the
previous section but with some modifications: we gener-
ate length-4 complex channels (K = 4) and the algorithm
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search for a length-16 equalizer (L = 16). Random chan-
nels have been tested with data block lengths of 1600, 2400
and 3200 symbols. The equalizers returned by APF-QAM16
are then tested with a sequence of 3200 symbols. The num-
ber of trials changed to 45 and the minimal resolution is now
(3200 ∗ 45)−1 ≈ 7.10−6. Figure 2 shows the average SER
of the 45 trials. We can note that APF-QAM16 algorithm

5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal to Noise Ratio (dB)

S
ym

bo
l E

rr
or

 R
at

e

Blind APF−QAM16

APF (1600 symb.)
APF (2400 symb.)
APF (3200 symb.)
MMSE−LE

Figure 2: Performances of blind APF-QAM16 equalizers
with 1600, 2400, and 3200 symbols with K=4 and L=16.

needs more symbols for equalizing the system. Indeed, we
obtain good SER’s for data block lengths greater than 2400
symbols. Moreover, with 3200 symbols, APF-QAM16 has
approximatively the same behavior than the MMSE-LE. In-
deed, the SER obtained with this size and for 20dB of SNR
is below 0, 03%.

5.3 Comparison with CMA

Finally, we compare performances of the CMA with APF
algorithms. Let us remind the Constant Modulus criterion
[10][6] JCM (z) = E{(1 − z2)2}. We have tested CMA and
APF algorithms on length-3 channels with data block length
of 1200 symbols. The SER returned by the length-10 equal-
izers are computed from another sequence of 2000 symbols.
Figure 3 shows that APF-QPSK works better than CMA
when noise is greater than 10dB. Moreover, APF-QAM16
is always below the SER obtained with CMA. This shows
the good behavior of blind APF algorithms.

6. CONCLUDING REMARKS

A set of criteria based on Alphabet Polynomial Fitting
has been introduced for blind SISO equalizers. Numerical
algorithms based on two polynomial criteria have been im-
plemented in block form for QPSK and QAM16 modulated
inputs. These algorithms have been tested with different data
block lengths and for various SNR’s. Simulations show that
the improvement is relative to the modulation of the signal
and the data block length used. Open issues currently being
addressed include the robustness of APF algorithms in the
presence of carrier residual (e.g. via joint estimation of car-
rier offset) and the extraction of known alphabet signals from
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Figure 3: Performances of APF-QPSK, APF-QAM16, and
CMA with K=3 and L=10.

outputs of MIMO channels.
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