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ABSTRACT

In this paper we exploit the Continuous Wavelet Transform
(CWT) on the sphere introduced in [1, 2] to build the as-
sociated Discrete Wavelet Frames. We first explore half-
continuous frames, i.e, frames where the position remains
a continuous variable, and then move on to a fully discrete
theory. This forces us to introduce the notion of controlled
frames [5], which reflects the particular nature of the under-
lying theory, particularly the apparent conflict between dila-
tion and the compacity of the S2 manifold. We conclude with
some numerical illustrations and future work.

1. INTRODUCTION

Many examples in physics and medicine require the exis-
tence of suitable tools for analyzing data on spherical mani-
folds. As an analysing tool, the CWT has many advantages
over the Fourier transform, namely a locality controlled by
a dilation and a translation of the wavelet. Given the CWT,
designing discrete spherical wavelet frames is of paramount
importance and is the main contribution of this paper.

1.1 Continuous Wavelet Transform on the Sphere

The CWT on the sphere is based on affine transformations on
the sphere, namely, rotations, defined by an element ρ of the
group SO(3); and dilations, parametrized by a scale factor
a ∈ R∗

+ [1]. If f ∈ L2(S2) ≡ L2(S2,dµ), with the rotation
invariant measure on the sphere dµ(θ ,ϕ) = sinθdθdϕ , we
have the following unitary operators:

• rotation Rρ :

(Rρ f )(ω) = f (ρ−1ω),ω ≡ (θ ,ϕ), ρ ∈ SO(3). (1)

• dilation Da:

(Da f )(ω) = λ (a,θ )
1
2 f (ω1/a), a ∈ R∗

+, (2)

where ωa ≡ (θa,ϕ) with tan θa
2 = a tan θ

2 , a > 0, θ ∈
[0,π ], ϕ ∈ [0,2π). λ is a normalization factor, given by

λ (a,θ ) = 4a2 [(a2 −1)cosθ +(a2 + 1)]−2. (3)
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Intuitively, the action of the dilation Da on a function f ∈
L2(S2) may be understood as follows: project f on the plane
tangent at the North Pole by a stereographic projection from
the South Pole, apply a Euclidian dilation by a to the pro-
jection and lift the resulting function back to the sphere by
inverse stereographic projection. In the language of group
theory, these two affine transformations, which do not gen-
erate a group and do not commute, belong to the conformal
group of the sphere S2, namely, the Lorentz group SO(3,1),
each subgroup being isolated via the Iwasawa decomposi-
tion (see [1] for details). Using these definitions, a square-
integrable function ψ on S2 is called an admissible wavelet
if there is a finite constant c ∈ R∗

+, such that, for all l ∈ N,

Gψ(l) =
8π2

2l + 1 ∑
|m|6l

∫

R
∗
+

da
a3 |ψ̂a(l,m)|2 < c, (4)

where ψ̂a(l,m) = 〈Y m
l |ψa〉 is the Fourier coefficient of ψa =

Daψ . Even though this condition seems complicated and
difficult to check, it can be proved that any admissible 2-D
wavelet in R2 yields an admissible spherical wavelet by in-
verse stereographic projection. In particular, for φ(θ ,ϕ) =

exp(− tan2( θ
2 )), which is the inverse stereographic projec-

tion of a Gaussian on the sphere, a simple example of admis-
sible wavelet is the Difference of Gaussians (DOG) spherical
wavelet

ψ(θ ,ϕ) = φ(θ ,ϕ)− 1
α [Dα φ ](θ ,ϕ), α ∈ R∗

+. (5)

Thus, with the given action of rotations and dilations, to-
gether with an admissible wavelet ψ ∈ L2(S2), the CWT of a
function f ∈ L2(S2) is:

Wf (ρ ,a) = 〈ψρ ,a| f 〉 =
∫

S2
dµ(ω) f (ω) [Rρ Daψ ]∗(ω). (6)

This last expression is nothing but a spherical correlation,
i.e., Wf (ρ ,a) = ( f ∗ψ∗

a )(ρ).
The following proposition shows that the family of ro-

tated and translated wavelets forms a continuous frame in
L2(S2), from which we derive a reconstruction formula:

Proposition 1 Let f ∈ L2(S2). If ψ is an admissible wavelet
such that

∫
S2 dϕψ(θ ,ϕ) 6= 0, then

f (ω) =

∫

R+∗

∫

SO(3)

dadν(ρ)
a3 Wf (ρ ,a) [RρL−1

ψ Daψ ](ω), (7)

where the coefficients are given by (6), Lψ is the frame oper-
ator defined by

[̂Lψ h](l,m) = Gψ(l)ĥ(l,m), ∀h ∈ L2(S2), (8)
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and Gψ(l) is defined by (4).

The spherical CWT defines an isometry, given by the fol-
lowing result:

Corollary 1 Under the condition of the previous proposi-
tion, the following Plancherel relation is satisfied

‖ f‖2
2 =

∫

R
∗
+

∫

SO(3)

dadν(ρ)
a3 Wf (ρ ,a)W̃ ∗

f (ρ ,a) (9)

where

W̃f (ρ ,a) = 〈ψ̃ρ ,a| f 〉 = 〈Rρ L−1
ψ Daψ | f 〉. (10)

The proof of these results and more details on the CWT
on the sphere and its implementation can be found in [2]

Since the stereographic dilation is radial around the North
Pole η ∈ S2, an axisymmetric wavelet ψ on S2, i.e., invariant
under rotation around η , remains axisymmetric through di-
lation. So, if a rotation ρ ∈ SO(3) is decomposed in terms
of its Euler angles ϕ ,θ ,α ∈ S1, i.e., ρ = ρ(ϕ ,θ ,α), then
Rρψa = R[ω]ψa, where [ω ] = ρ(ϕ ,θ ,0) ∈ SO(3) is the result
of two consecutive rotations, and moves η to ω = (θ ,ϕ) ∈
S2. Consequently, the CWT is redefined on S2 ×R∗

+ by

Wf (ω ,a) ≡ ( f ∗ψ∗
a )([ω ]) ≡ ( f ? ψ∗

a )(ω), a ∈ R∗
+. (11)

In that particular case, the reconstruction formula (9) be-
comes

f (ω) =

∫

R
∗
+

∫

S2

dadµ(ω ′)
a3 Wf (ω ′,a) ψ̃ω,a(ω ′), (12)

with ψ̃ω,a = R[ω]L
−1
ψ Daψ , and where Lψ is the frame opera-

tor defined in (8) with Gψ reduced now to

Gψ(l) =
4π

2l + 1

∫

R
∗
+

da
a3 |ψ̂a(l,0)|2. (13)

2. DISCRETE WAVELET FRAMES ON THE
SPHERE

In this section, we describe under which conditions the pa-
rameters of the continuous wavelet transform can be dis-
cretized. We focus on the case of axisymmetric wavelets.

2.1 Half-continuous Spherical Frame

2.1.1 First Approach

We propose now to discretize the scale of the CWT on the
sphere as we let the position vary continuously. In other
words, we choose the parameterization

ω ∈ S2 (14)
a ∈ A ≡ {a j ∈ R∗

+ : j ∈ Z,a j > a j+1}, (15)

which generates the half-continuous grid

Λ(A) = {(ω ,a j) : ω ∈ S2, j ∈ Z}. (16)

In order to have a reconstruction for every function f ∈
L2(S2), a first possible approach would be to impose

m‖ f‖2
2 6 ∑

j∈Z

ν j

∫

S2
dµ(ω)|Wf (ω ,a j)|

2
6 M‖ f‖2

2, (17)

with m,M ∈ R∗
+ independent of f , and for some weights

ν j > 0 taking into account the discretization of the contin-
uous measure a−3 da. In this case, the family

{ψω,a j = R[ω]Da j ψ : (ω ,a j) ∈ Λ(m)}, (18)

constitutes a half-continuous frame in L2(S2). The follow-
ing proposition translates this last condition into the Fourier
space (as defined by the spherical harmonics).

Proposition 2 If there are two constants m,M ∈ R∗
+ such

that

m 6
4π

2l + 1 ∑
j∈Z

ν j |ψ̂a j(l,0)|2 6 M (19)

for all l ∈ N, then (17) is fulfilled.

Let us choose a DOG wavelet (α = 1.25) and a discretized
dyadic scale with a certain number of voices K ∈ N0, namely

a j = a0 2− j/K, j ∈ Z. (20)

For the sake of simplicity, we replace the indices a j by j.
Moreover, we choose weights ν j that take into account the
discretization of the continuous measure da

a3 , which means

ν j =
a j−a j+1

a3
j

= a−2
j

(
21/K−1

21/K

)
. (21)

We have estimated the bounds m and M, respectively, from
the minimum and the maximum of the quantity

S(l) =
4π

2l + 1 ∑
j∈Z

ν j|ψ̂ j(l,0)|2, (22)

over l ∈ [0,31] and for K ∈ [1,4]. The results are shown in
Table 1(a).

K m M M/m
1 0.5281 0.9658 1.8288
2 0.6817 1.1203 1.8107
3 0.6537 1.1836 1.8107
4 0.6722 1.2171 1.8107

(a)

K m M M/m
1 0.7313 0.7628 1.0431
2 0.8747 0.8766 1.0021
3 0.9242 0.9254 1.0014
4 0.9503 0.9512 1.0009

(b)

Table 1: Estimation of the bounds m and M as a function of
the extrema of S(l) for some values of K. (a) First approach.
(b) Second approach.

We can see that for K > 2, the ratio M/m converges to-
ward the value 1.8107. So, it does not converge toward a
tight frame, for which m = M. This is mainly due to a non-
vanishing “gap” in the graph of S(l) for small values of l.

2.1.2 Second Approach

Trying to converge to a tight frame, we adopt now a sec-
ond approach for our half-continuous discretization. We start
from the Plancherel relation as defined in Corollary 1. In
other words, we will observe under which conditions we ob-
tain a controlled frame [5]. That is, for two frame bounds
m,M ∈ R∗

+, we want

m‖ f‖2
2 6 ∑

j∈Z

ν j

∫

S2
dµ(ω)[Wf W̃ ∗

f ](ω ,a j) 6 M‖ f‖2
2, (23)
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where f ∈ L2(S2), W̃f (ω ,a j) = 〈R[ω]L
−1
ψ Daψ | f 〉, and where

the brackets mean multiplication of two functions. The op-
erator Lψ controls the frame and it is bounded with bounded
inverse if and only if the wavelet ψ is admissible.

Proposition 3 If there exist two constants m,M ∈ R∗
+ such

that

m 6
4π

2l + 1
Gψ(l)−1 ∑

j∈Z

ν j |ψ̂ j(l,0)|2 6 M, (24)

with Gψ (l) given by (13) and for all l ∈ N, then (23) is veri-
fied.

By using the same scale discretization, the same wavelet
and the same weights ν j as in the first approach, we find now
(see Table 1(b)) that for l ∈ [0,31], the ratio M/m tends to 1 as
K increases. A tight frame is thus reachable by considering
the controlled frame approach.

2.1.3 Construction of a tight half-continuous frame

It is possible to build a tight half-continuous frame on the
sphere using the previous considerations.

Proposition 4 Let A≡ {a j : j ∈Z,a j > a j+1} be a sequence
of scales. If ψ is an axisymmetric wavelet such that

gψ(l) =
4π

2l + 1 ∑
j∈Z

ν j |ψ̂ j(l,0)|2 6= 0, ∀ l ∈ N, (25)

then,
f (ω) = ∑

j∈Z

ν j [Wf (·,a j)? ψ#
j ](ω), (26)

where ψ#
j = l−1

ψ Da j ψ and lψ is the operator defined in the

Fourier domain by l̂−1
ψ h(l,m) = g−1

ψ (l)h(l,m). In other
words, the frame controlled by lψ is tight.

The new operator lψ is simply the discretization on A of Lψ
as defined in (13).

Notice that one can introduce a scaling function ζ such
that

|ζ̂ (l,m)|2 = δm,0

−1

∑
j=−∞

ν j |ψ̂ j(l,0)|2, (27)

so that

f (ω) = [S f ? ζ #](ω)+ ∑
j∈N

ν j[Wf (·,a j)? ψ#
j ](ω), (28)

with S f (ω) = 〈R[ω]ζ | f 〉 and ζ # = l−1
ψ ζ .

2.2 Discrete Spherical Frames

In this section, we will completely discretize the CWT on the
sphere. The scales are discretized as previously, namely

a ∈ A = {a j ∈ R∗
+ : a j > a j+1, j ∈ Z}, (29)

and the positions are taken in an equi-angular grid G j indexed
by the scale level, related to the scale in such a way that ω ∈
G j, with

G j = {(θ jp,ϕ jq) ∈ S2 : θ jp =
(2p+1)π

4B j
,ϕ jq = qπ

B j
}, (30)

p,q ∈ N j ≡ {n ∈ N : n < 2B j} and for some range of band-
widths B = {B j ∈ 2N, j ∈ Z}. Actually, θ jp form a pseudo-
spectral grid and are localized on the knots of a Chebishev
polynomial of order 2B j [3, 4]. With this choice, for certain
weights w jp > 0 and on every grid G j, the following quadra-
ture rule is verified [4]:

∫

S2

dµ(ω) f (ω) = ∑
p,q∈N j

w jp f (ω jpq), (31)

with ω jpq = (θ jp,ϕpq) and for every band-limited function
f ∈ L2(S2) of bandwidth B j, i.e., such that f̂ (l,m) = 0 for all
l > B j.

The complete space of the discretization is finally

Λ(A,B) = {(a j,ω jpq) : j ∈ Z, p,q ∈ N j}. (32)

In this case, for an axisymmetric and admissible mother
wavelet ψ ∈ S2, the family of wavelets

{ψ jpq = R[ω jpq]Da j ψ : j ∈ Z, p,q ∈ N j} (33)

constitutes a weighted frame controlled by the operator Lψ , if
there exist two constants m,M ∈ R∗

+ such that, for any func-
tion f ∈ L2(S2), we have

m‖ f‖2
2 6 ∑

j∈Z

∑
p,q∈N j

ν jw jp [Wf W̃ ∗
f ](ω jpq,a j) 6 M‖ f‖2

2,

(34)
In the last expression, the values ν jw jp replace the measure
a−3 dadµ(θ ,ϕ).

Proposition 5 Let the discretized grid Λ(A,B) be given as in
(32). Let ψ be an axisymmetric and admissible wavelet on
S2, and

S′(l) = ∑
j∈Z

4πν j
2l+1 1l[0,B j[(l) G−1

ψ (l) |ψ̂ j(l,0)|2, (35)

δ = ‖X ‖ ≡ sup
(Hl)l∈N

‖X H‖
‖H‖ , (36)

with the infinite matrix (Xll′)l,l′∈N given by

Xll′ = ∑
j∈N

c j(l, l
′)1l[2B j ,+∞[(l + l′)|ψ̂ j(l,0)||ψ̂ j(l

′,0)| (37)

and c j(l, l′) =
2πν j

B j
G−1

ψ (l)
[
(2(l+B j)+1

)(
2(l′+B j)+1

)] 1
2 .

If we have

0 6 δ < K0 6 K1 < ∞, (38)

with K0 = infl∈N S′(l) and K1 = supl∈N
S′(l), then the family

(33) is a weighted spherical frame controlled by the operator
Lψ with frames bounds K0 − δ , K0 + δ .

A detailed proof of this proposition can be found in [5].
The evaluation of ‖X ‖ could be complicated when the

matrix X is infinite. However, in practice, we work with
band-limited functions f ∈ L2(S2) of bandwidth b ∈ N0.
Consequently, ‖X ‖ could be replaced by the norm of the
finite matrix (Xl,l′ )06l,l′<b.
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We have estimated the bounds of a spherical DOG
wavelet frame in the case b = 64, using a dyadically dis-
cretized scale (with K = a0 = 1 in (20)), while the bandwidth,
associated to the grid size supporting each resolution j, was
fixed to

B j = B02| j|, B0 ∈ N, (39)

where B0 is the minimal bandwidth associated to ψ1. The
last equation takes into account the particular nature of the
stereographic dilation on S2. Indeed, for the DOG wavelet,
we may show that the (essential) support of ψ̂ j increases with
j if j > 0, and growths with − j if j 6 0 [5].

Table 2 presents the results of the evaluation of K0, K1
and δ as well as the bounds of the associated frames.

K0 K1 δ m = K0 − δ M = K1 + δ M/m
B0 = 2 0.6807 0.7700 84.1502 − − −
B0 = 4 0.7402 0.7790 0.0594 0.6808 0.8384 1.2314
B0 = 8 0.7402 0.7790 0.0014 0.7388 0.7804 1.0564

Table 2: Evaluation of K0, K1 and δ on the fonctions f ∈
L2(S2) at bandwidth 64.

One can see that for B0 > 4, condition (38) is reached.
However, a tight frame cannot be obtained by increasing
B0. Actually, if B0 tends to infinity, the spherical grids at
each resolution get finer and finer and we approach the half-
continuous frames, but as seen in the previous section, the
one voice discretization of the scale is not sufficient.

3. EXAMPLES AND IMPLEMENTATIONS

The next application shows the advantages of the half-
continuous frame decomposition over methods constructed
completely in the frequency domain. We work on a cartogra-
phy of the surface of Jupiter and we want to locally enhance
the details in a neighborhood of its Red Spot. All the spher-
ical correlations defining the wavelet coefficients and the re-
construction (28) have been performed in Fourier space using
the spherical correlation theorem [4]

f̂ ? g(l,m) =
√

4π
2l+1 f̂ (l,m) ĝ(l,0), (40)

for f ∈ L2(S2) and for any axisymmetric function g∈ L2(S2),
and by using the SpharmonicKit [6] which performs fast (for-
ward and inverse) spherical harmonics transforms. All these
methods are incorporated into the Matlab c©YAWtb toolbox1.

We consider an equi-angular grid of size is 512×512 and
the data bandwith is set to b = 256. In this context the DOG
wavelet is properly discretized for a scale range with | j| 6 7
and a0 = 1.

We proceed as follows: Before reconstruction, the coef-
ficients at the finer scale Wf (ω ,a7) are multiplied by a mask
function that increases their amplitudes in a vicinity of the
Red Spot. The rest of the coefficients are not modified.

Results after reconstruction are shown in Figure 1. We
show a zoom over the Red Spot of the reconstructed signal
without any processing (left) and the modified version where
the Red Spot’s details are clearly sharper (right).

1Developed by some of us and freely (GPLly) available at
http://www.fyma.ucl.ac.be/projects/yawtb.

Figure 1: Enhacement of the details of Jupiter’s Red Spot:
zoom over the spot (left); zoom over the spot with sharper
details (right).

4. CONCLUSIONS AND FUTURE WORK

Conditions on the existence of half-continuous and discrete
spherical frames have been established from the (stereo-
graphic) spherical CWT [1]. The last section illustrates the
efficiency of a particular DOG (half-continuous) tight frame
with a simple Jovian image enhancing. An example of a dis-
crete frame using the results of Proposition 5 has still to be
designed. These techniques could serve for instance to dis-
cover the Gaussian anisotropies in the astronomical Cosmic
Microwave Background [7], or to track the orientations in R3

of fibres in the human brain connectivity [8]. Work in these
directions is currently in progress.
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