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ABSTRACT
This paper addresses the problem of developing a least mean
squares (LMS) style algorithm for minimizing bit error rate (BER)
for updating linear/decision-feedback equalizers and multi-user de-
tectors operating in impulsive noise environments characterized by
an alpha stable distribution. The concepts build on earlier work in
a Gaussian noise environment [1] and exploit some of the ideas de-
veloped in [2] for dealing with alpha stable noise as a mixture of
a Gaussian and a Cauchy distribution. The development exploits
the stable nature of the alpha distribution i.e. stability under lin-
ear transformation or filtering. An improvement in convergence
and BER-performance is achieved by using minimum bit error rate
(MBER) algorithm criterion over conventional LMS based design,
as apparent from simulation results, thus making MBER criterion
ideal for alpha stable noise environment.

1. INTRODUCTION

The Gaussian process has always been the dominant noise model
in communications and signal processing, mainly because of the
central limit theorem. In addition, the Gaussian assumption often
leads to analytically tractable solutions [3]. Unfortunately, in many
communication channels, the observation noise exhibits Gaussian,
as well as impulsive characteristics. The sources of impulsive noise
may be either natural (e.g. lightning, ice-cracking), or man-made.
It may include atmospheric noise or ambient noise. It might come
from relay contacts, electro-magnetic devices, electronic apparatus,
or transportation systems, switching transients, and accidental hits
in telephone lines [4, 5]. Most of the present day systems are op-
timized under the Gaussian assumption and their performance is
significantly degraded by the occurrence of impulsive noise [2].

Impulsive noise is more likely to exhibit sharp spikes or occa-
sional bursts of outlying observations than one would expect from
normally distributed signals. A variety of impulsive noise models
have been proposed [5, 6] However, most common model to rep-
resent impulsive phenomena is the family of α-stable random vari-
ables [3]. Stable distributions share defining characteristics with the
Gaussian distribution, such as the stability property and central limit
theorems. Gaussian noise is considered as limiting case of α-stable
distribution when α = 2.

In the following, a quick overview of stable processes is given
in section-2. An overview of state-translated DFE and minimum-
BER equalizer is presented in section-3 and section-4 respectively.
The section-5 discusses derivations for an adaptive equalizers for
α-stable noise. Simulation technique and assumptions along with
results are discussed in section-6. Finally conclusions are drawn in
section-7.

2. THE CLASS OF STABLE RANDOM VARIABLES

The family of stable random variables (RV) is defined as direct gen-
eralization of the Gaussian law. The main characteristics of a non-
Gaussian stable probability density function (pdf) is that its tails are
heavier than those of the normal density. The symmetric α-stable
(SαS) pdf is defined by means of its characteristic function F(ω) =

exp(δ iω - γ
�
ω

� α ). The parameters α , γ and δ describe completely
a SαS distribution. The characteristics exponent α (0 � α � 2 �
controls the heaviness of the tails of the stable density; a smaller
value implies heavier tails, while α = 2 is the Gaussian case. The
dispersion parameter γ (γ � 0) plays an analogous role to the vari-
ance and refers to the spread of the distribution. Finally, the location
parameter δ is comparable with the mean of the distribution.

Theoretical justification for using the stable distribution as a
basic statistical modelling tool come from the generalized central
limit theorem. Unfortunately, no closed-form expressions exist for
the stable density, except the Gaussian (α = 2), Cauchy (α = 1)
and Pearson (α � 1

2 ) distributions. An important property of all
stable distributions is that only the lower moments are finite. That
is, if x is a stable RV, then ���
	 �

x
� p � � ∞ iff p � α . A well known

consequence of this property is that all stable RV’s with α � 2 have
infinite variance [2]. For further discussion on α-stable RV and their
properties refer [3].

3. BACKGROUND

The channel is modelled as a finite impulse response filter with an
additive noise source, and the received signal at sample k is

r � k �
� r̄ � k ��� e � k ��� na � 1

∑
i � 0

ais � k � i ��� e � k �
where r̄ � k � denotes the noiseless channel output; na is the chan-
nel length and ai are the channel tap weights; the white noise e � k �
has zero mean and is drawn from an alpha stable distribution with
dispersion γ and characteristic exponent α; the symbol sequence	 s � k � � is independently identically distributed (IID) and has a 2-
PAM (2 state pulse amplitude modulation) constellation.

For a conventional linear-combiner DFE the decision variable
z at time k is a linear combination of received samples and past
decisions:

z � k ����� T � � k ����� T ˆ� b � k �
where � � k �
��� r � k � r � k � 1 ��� �!� r � k � m � 1 �#" T is the channel observa-
tion vector, ˆ� b � k �
��� ŝ � k � d � 1 � ŝ � k � d � 2 �$� � � ŝ � k � d � n �%" T is the
past detected symbol vector, �&�'� w0 w1 � � � wm � 1 " T is the feedfor-
ward coefficient vector and �(�)� b1 b2 � � � bn " T is the feedback coef-
ficient vector. The integers d, m and n will be referred to as the de-
cision delay, the feedforward delay and feedback taps respectively.
Without loss of generality, d � na � 1, m � na and n � na � 1 will be
used as this choice of DFE structure parameters which is sufficient
to guarantee the linear separability of the subsets of the channel
states related to the different decisions [7]. Alternatively the linear-
combiner DFE can be expressed in state translated form [8]:

z � k ���*� T � � � k ���,+ 2 ˆ� b � k �-����� T �/. � k � (1)

where + 2 is constructed by partitioning the channel impulse re-
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sponse matrix +0�1� + 1 + 2 " , where:

+ 1 � 233334
a0 a1 5-565 ana � 1

0 a0
. . .

...
...

. . .
. . . a1

0 5-5-5 0 a0

7 88889
+ 2 �

233333334
0 0 565-5 0

ana � 1 0
. . .

...

ana � 2 ana � 1
. . . 0

...
. . .

. . . 0
a1 5-5-5 ana � 2 ana � 1

7 88888889
Since the linear-combiner DFE is a special case of the generic DFE
structure, by performing translation of eq. (1), it is reduced to the
equivalent linear equalizer ‘without decision feedback’:

f . � � . � k �6���:� T � . � k � (2)

The decision boundary of this equivalent linear equalizer consists
of M-1 hyperplanes defined by: � . : � T � . � 2i � M, 1 � i � M � 1.
These M-1 parallel hyperplanes can always be designed properly to
separate the M subsets of the translated channel states R ; i < , 1 � i �
M. In particular, for M � 2, the decision boundary, � . : � T � . � 0,
is a hyperplane passing through the origin of the � . (k)-space. It is
shown, in [7], that in the state translation the channel states remain
separable despite translation. The states can be made separable by
applying a simple initial condition. The performance of state trans-
lated linear combiner DFE is shown to be better than conventional
minimum mean square error (MMSE) DFE, however performance
depends on the accuracy of the built-in channel estimator.

The Wiener or MMSE solution is often said to provide the op-
timal � and � . It is however optimal only with respect to the mean
square error criterion. Obviously, there must exist a solution � opt
which achieves the best equalization performance for the structure
of eq. (2). We refer to this � opt as the minimum bit error rate
(MBER) solution of the linear-combiner DFE. The MMSE linear-
combiner DFE is generally not this MBER solution. A natural ques-
tion is how different the MMSE and MBER solutions can be. The
difference in performance is demonstrated in [7].

4. MINIMUM BIT ERROR RATE EQUALIZATION

The bit error rate (BER) observed at the output of the equalizer is
dependent on the distribution of the decision variable z � k � which in
turn is a function of the equalizer tap weights. To be more specific,
the probability of error, PE , is:

PE � P � sgn � s � k � d �-� z � k �=� 0 �
The sign adjusted decision variable zs � k �>� sgn � s � k � d �-� z � k � is
drawn from a mixture process. From the definition of z � k � ,

zs � k �?� sgn � s � k � d �6�@�A� T + � � k ����� T ˆ� b � k �-�� sgn � s � k � d �-�B� T C � k �� sgn � s � k � d �6� z . � k ��� e . � k � (3)C � k �=�D� e � k � e � k � 1 �$� � � e � k � d � n �%" T is the vector of noise sam-
ples; � � k �E�)� s � k � s � k � 1 �$� � � s � k � d � nna �#" T is the vector of trans-
mitted symbols. The first term on the right hand side of eqn. (3)
sgn � s � k � d �-� z . � k � , is the noise-free sign-adjusted equalizer output
and is a member of a finite set with Nz elements - these are the
local means of the mixture. Without noise the combination of chan-
nel and DFE is a finite state machine whose state is defined by the
vector � � k � . Thus if � � k �GFH	 �

1 5-5-5 �
i 5-565 �

Nz
� , the state �

i uniquely

r  (k)
  z−dL

Channel estimation

Equaliser

Training sequence

x̂(k−d)

ŷ(k−d)

Noise parameters

Estimation

Limiter

g(.)

r(k) n(k−d)^

ĥ

Figure 1: Receiver architecture

defines the state of z . � k � , � � k � , s � k � d � and ˆ� b � k � - label these zi, �
i,

si and ˆ� bi respectively. Note that while � � k � has Nz states, s � k � d �
has 2 possible values (2-PAM). However since s � k � d � is a compo-
nent of the vector � � k � , the state of � � k � uniquely defines the value
of s � k � d � . The second term e . � k � is a zero mean α-stable white
noise process with dispersion γ � ∑M

j � 1
�
w j

� α � 1
α and characteristic ex-

ponent α - defining the distribution about the local means.

5. ADAPTIVE EQUALIZER

Consider noise density function p � x � associated with the zero mean
random variable x. The density function is symmetrical and nor-
malized such that the variance or dispersion is unity. The associ-
ated distribution function is P � x � . The “generalized” error function
is Q � x �I� 1 � P � x � and its derivative is Q . � x �I�J� p � x � .

The probability of error at the output of a linear or state trans-
lation equalizer with N noise free states as a function of the weight
M-vector � is:

PE �A�K�,� 1
N

N

∑
i � 1

Q � gi �A�K�-�
where gi �A�K� is the signed decision variable, normalized by the
“strength” of the noise. In the Gaussian case :

gi �L�K�M� � T �
isi�!� � � �
σ

where �
i is the ith noise free received vector; the Euclidean norm

is
� � � �!� �N� ∑M

j � 1
�
w j

� 2 � 1
2 ; si is the transmitted symbol associated

with that vector; σ 2 is the noise variance. In the α-stable case:

gi �A�K�I� � T �
isi� � � � �

αγ
1
α

where the “α-norm” is defined as:
� � � � �

α �O� ∑M
j � 1

�
w j

� α � 1
α

For adaptive filters, derivatives of the form ∂PE P ∂w j : Q j are
required.

∂PE

∂w j
� 1

N

N

∑
i � 1

Q . � gi �L�K�-� ∂gi �A�K�
∂w j� � 1

N

N

∑
i � 1

p � gi �A�K�-� ∂gi �A�K�
∂w j
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No analytic expression for the density p � x � exists in the general
α-stable case. However it can be approximated by a mixture of a
Gaussian, pg � x � and a Cauchy pc � x � [2]:

p̂α � x ��� β pg � x �R�S� 1 � β � pc � x �
where β is dependent on α , γ and the dynamic range of the receiver.
Alternatively, a look-up table and interpolation can be used to eval-
uate the density. In the Gaussian case the derivative is given by:

∂gi �A�K�
∂w j

� ∂
∂w j

T � T� � � � �AU �
isi

σ

� 1� � � �!��VXW T
j � � T w j�!� � � � 2 Y �

isi

σ

where W j is an M-vector with all zero elements apart from the jth
entry which is unity. In the α-stable case:

∂gi �A�K�
∂w j

� ∂
∂w j

T � T� � � � �
α

U �
isi

γ
1
α

� 1� � � � �
α

V W T
j � � T �

w j
� α � 1sgn � w j �� � � � � α

α
Y �

isi

γ
1
α

Since the α-stable case is more general we will work with it from
now on. Multiply out gives:

∂gi �A�K�
∂w j

� 1� � � � �
α

V ri j � zi
�
w j

� α � 1sgn � w j ��!� � � � α
α

Y si

γ
1
α

where ri j is the jth element of �
i and zi �Z� T �

i i.e. the equalizer
output associated with the ith noise free state. Collecting partial
derivatives together to form a gradient vector we have:

∇PE �L�K�
��� 1
N

N

∑
i � 1

p � gi �A�K�-� 1� � � � �
α

T �
i � zi [ �K\ α�!� � � � α

α
U si

γ
1
α

where [ �K\ α is an M-vector with jth element is
�
w j

� α � 1sgn � w j � .
Since the norm of the weight vector does not affect PE in the binary
signalling case it can be set to unity at each iteration thus:

∇PE �A�K�
��� 1

Nγ
1
α

N

∑
i � 1

p � zisi

γ
1
α

�]� � i � [ �K\ α zi � si

Using the kernel density ideas developed in [1] leads to an LMS-
style least bit error rate (LBER) algorithm.

Filter output:
z � k �,�^� T � k � � � k �

Update weights:�_� k � 1 ���*�_� k ��� µ p � z � k � s � k � d �
γ

1
α

�
� � � k ��� [ �_� k �-\ αz � k �`� s � k � d �

γ
1
α

The equalizer tap weights are normalized after each update. The
final decision, ŝ � k � d � , is made on the filter output � T � k � � � k � .
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Figure 2: Convergence plot for Cauchy (α = 1) distributed noise

6. SIMULATION STUDY

The traditional performance measures are, usually, plots of the bit
error ratio (BER) against the signal to noise ratio (SNR). In a Gaus-
sian noise environment the computation of SNR involves the vari-
ance of the useful received signal, as well as the variance of the
corrupting noise. In α-stable noise environment with α � 2, how-
ever, the variance of the noise is infinite [3] making the use of tradi-
tional BER to SNR graphs meaningless. Nevertheless, all receivers
in practice have a finite input dynamic range. The limiter at the front
end of the receiver is assumed to be an ideal saturation device, with
transfer function

g � x a G ���'b x :
�
x
� � G

sign � x � G : elsewhere

G being the saturation point of the limiter. For a given satura-
tion limit G, the SNR at the limited received signal rL � k � is always
finite. Fig. 1 shows the equalizer structure used in this paper. The
SNR of the limited received signal rL � k � is used for performance
evaluation in environments where the noise variance is infinite. This
is referred as the SNR at the receiver.

Simulation were performed by assuming that noise is Cauchy
distributed i.e. α � 1 and clipper, at DFE front-end, is at c 4. The
variance of the noise estimate dn � k � is calculated as discussed in [2].
The channel was chosen as [0.3482 0.8704 0.3482]. DFE structure
was chosen to be d � 2, m � 3 and n � 2. The legends in Fig. 2
and Fig. 3 depict: a) LMS for conventional least mean square al-
gorithm for both feedforward and feedback taps of the equalizer,
b) LBER-Gaussian for least bit error rate [1] algorithm for adapt-
ing both feedforward and feedback equalizer taps assuming that
the noise is Gaussian, c) LBER-Cauchy for LBER algorithm for
adapting both feedforward and feedback equalizer taps assuming
Cauchy distributed noise, d) state trans-Gaussian; same structure as
(b), however state translated design [7], e) state trans-Cauchy; same
structure as (c) i.e. both the feedback and feedforward filter adapt
assuming Cauchy distributed noise.
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Figure 3: Performance plot for Cauchy (α = 1) distributed noise

Fig. 2 demonstrates convergence rates for different algorithms.
An ensemble of 100-runs over SNR = 7.9 dB was taken to gen-

erate this plot. Fig. 3 illustrates BER performance of the algorithms
for 105 input samples and over an ensemble of 1000-runs. Simu-
lations suggest that state-translated design for Cauchy distributed
noise achieves better performance than other algorithms. The con-
vergence of the state-translated design for Cauchy distributed noise
is faster and stable. The LMS algorithm, as expected, suffers from
instability and poor performance for α-stable noise, primarly be-
cause of dependence on instantaneous error. At BER of 5 e 10 � 3

a gain of approximately 5 dB is achieved over traditional LMS al-
gorithm. The performance of LBER-Gaussian and state translated
LBER-Gaussian algorithms suggests ability of Gaussian mixtures
to model α-stable distribution [9].

7. CONCLUSIONS

An minimum bit error rate adaptive algorithm for impulsive noise
modelled as α-stable noise has been proposed in this paper. It is
shown that for minimum bit error design, the adaptation is a func-
tion of the noise density function. The comparison between var-
ious adaptive algorithms working in identical channel, noise and
DFE structure has been drawn. The LBER-Cauchy and the state
trans-Cauchy has faster convergence than the other adaptive algo-
rithms in Cauchy noise environments, which is a special form of α-
stable noise. Extensive simulations strongly suggest that the state-
translated design for the α-stable noise has better convergence and
BER performance than the other algorithms. It is also interesting
to observe that the adaptive algorithms based on Gaussian noise as-
sumption despite slow convergence in impulsive noise environment
perform closer to those designed with Cauchy noise assumption.
This can be attributed to the fact that α-stable noise can be mod-
elled as Gaussian mixture [9, 10] and the effect of the limiter at
front end. Lastly as expected LMS performs poorer that other al-
gorithms in α-stable noise environments. From this discussion we
can safely conclude that the adaptation cost function based on noise
distribution results in improved performance.
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