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ABSTRACT

Quantized frame expansions based on block transforms
and oversampled filter banks (OFB) have been consid-
ered recently as joint source-channel codes for erasure
and error resilient signal transmission over noisy chan-
nels. This paper examines the problem of syndrome
decoding and especially of error localization and cor-
rection in quantized OFB signal expansions. The error
localization problem is treated as an M-ary hypothesis
testing problem. The tests are derived from the join-
t probability density function of the syndromes under
various hypothesis of impulse noise positions and in a
number of consecutive windows of the received samples
(to account for the encoding memory of the convolution-
al code). The error amplitudes are then estimated from
the syndrome equations by solving them in the least
square sense. The message signal is reconstructed from
the corrected received signal by a pseudoinverse receiv-
er. The algorithm is applied to joint source and channel
coding (JSCC) of images based on oversampled wavelet
filter banks.

1. INTRODUCTION

In the joint source and channel coding based on over-
sampled transform codes the error control coding and
the signal decomposition are integrated in a single block
by using an oversampled filter bank (OFB). The er-
ror protection in this approach is introduced before the
quantization allowing suppression of quantization noise
effects. So far the research in this area has been con-
centrated on the oversampled transform codes (OTC)
which are the OFB codes with polyphase filters orders
equal to zero. The OTC can therefore be viewed as real
number block codes while the OFB codes with higher or-
der polyphase matrices can be associated to real number
convolutional codes.

Decoding of real number block codes has been con-
sidered in [1, 2, 3, 4]. Here we are considering the decod-
ing of the real number convolutional codes in presence
of impulse noise errors and the background noise. This
problem has been treated in [5] in the context of fault
tolerant systems and channel coding for communication-
s, and recently in [6] in the context of joint source and
channel coding (JSCC). In [5] the detection of the in-
creased noise statistics due to impulse errors is motivat-
ed by an M-ary hypothesis testing theory and employs
likelihood ratios of quadratic forms [5, 1]. In [6] the
error localization is also treated as an M-ary hypothe-
sis testing problem and differs from [5] in the way the
likelihood values for hypothesis testing are calculated.

The approach presented here is inspired from [5]. We
use a minimum total probability of error test [7], that is,
we compute the a posteriori probability of each hypothe-
sis and choose the largest. The a posteriori probabilities
are derived from the joint pdf of the syndrome vectors
under various hypothesis of impulse noise positions and
in a number of consecutive windows of the received sam-
ples (to account for the encoding memory of the convo-
lutional code). The error amplitudes are then estimated
by solving the syndrome equations in the least square
sense. The message is reconstructed from the correct-
ed received sequence by a pseudoinverse receiver. The
algorithm is applied to joint source and channel coding
(JSCC) of images based on oversampled wavelet filter
banks.

2. GENERAL FRAMEWORK AND
PROBLEM STATEMENT

The block diagram of an analysis and synthesis bank
of with N filters and decimation factor K is shown in
Fig.1. In the analysis filter bank, an input signal z[n]
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Y'[n]

Hk|—

RARL

Figure 1:

is split into N signals y*[n], k = 0,...,N — 1. The
sequence y*[n] is obtained by downsampling the output
of the filter k with a factor K, where K < N. The
sequences y*[n] are then quantized and transmitted over
the channel which introduces impulse noise errors. Due
to quantization and channel errors he received signal
y%[n] differs from y*[n] and can be written as

yrln] = y'[n] + €'[n] + n'[n] (1)

where n'[n] is the quantization noise modeled as a Gaus-
sian random variable with a zero mean and variance
2

o2 and €‘[n] is an impulse channel error modeled as

a Bernoulli Gaussian process e[n] = a[n]b[n] where
a[n] is a sequence of ones and zeros with probability
P(a[n] = 1) = p and b[n] is a Gaussian random variable
with zero mean and variance 2. It is assumed that the
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variance of the impulse noise is significantly larger than
that of a quantization noise o7 >> 2. The aim is to
use the redundancy introduced by oversampling for cor-
rection of the channel errors and/or suppression of the
quantization noise.

_ In the following bold letters denote vectors, (T and

() denote transpose and paraconjugate operation, re-
spectively. The analysis filter bank’s outputs and the
corresponding received samples for time instant n are
represented as:

yN=1 )"

_ T
yg 'n]]" ,n=0,...L

y[n] = [y°[n]
yrlnl = [y}l

where y[n] = 0 and yg[n] =0 for n < 0 and n > L.

3. OVERSAMPLED FILTER BANK CODE

Frame expansions based on oversampled filter banks
can be associated to convolutional codes on the real or
complex fields with corresponding generator and parity
check matrices. The encoding operation performed by
an oversampled filter bank with N channels and down-
sampling factors K can be compactly described in the
polyphase domain as

Y(2) = E(2)X(2), (2)

where X(z) and Y (z) are the polyphase representations
of the input and the output signals for the analysis filter
bank and E(z) is an [N x K] analysis polyphase matrix
with elements E; ;(z) = Zfﬁo 9i(Kk+7)z* where g; is
the ith filter’s impulse response and Lg is the smallest
integer exceeding Lo /K, where L denotes the largest
filter length. The polyphase analysis matrix E(z) is re-
ferred to as a generator matrix of an OFB code.
Similarly, the parity check matrix is defined as

P(2)E(z) = 0
P(z) = YL, Prpiz 3)

The error correction strategy which makes use of this
property of the parity check matrix is referred to as
syndrome decoding. The syndromes S(z) are hence ob-
tained by filtering the received signal Yg(z) with the
parity check filters as

S(z) = P(2)Yr(2) (4)

From Egs. (2), (3) and (4) we can observe that filtering
sequence Y (z) with a party check filters yields zero syn-
dromes. On the other hand, if the transmitted signal is
corrupted by noise we have

S(z) = P(z)e(z) + P(2)n(z) (5)

where e(z) and n(z) are the polyphase representations
of the impulse and the quantization noise. Therefore
syndromes can be used to detect and correct impulse
noise errors.

4. DESCRIPTION OF THE DECODING
ALGORITHM

As the convolutional code codeword is very long the syn-
drome decoding algorithm operates on the segments of
the codeword in a sequential manner. The errors are es-
timated for the first window of the received signal, their
influence is removed and hence the decoding process for
the next window is the same as that for the first window.

The syndrome equations for one window can be writ-
ten as

s’ =Py}, (6)
where
8/ = [s"[j] s"[j+1] sT[j+ M —1]]"
sljl = [s1[j]  s2[J] sn-x[f]" . (7)
v = [y&li - L] Yhl + M —1]]

and Pisa[(N — K)M x N(M + Lp)] matrix given by

P, P, ... P,, 0O ...

0o Po P, ... Py, 0O ..
P=|. . . . . . . (8)

0 ... 0 P, P P,

The decoding algorithm consists of the following steps:
impulse error localization and impulse error amplitude
estimation step. After amplitude estimation step the
error estimates are subtracted from the received signal,
new syndrome values are calculated and the error cor-
rection procedure moves to the syndrome and received

data window S/t and y#M, respectively.

4.1 Error Localization

The approach presented here is based on the M-ary hy-
pothesis testing with the Bayes Criterion. In particular
we use the minimum total probability of error test [7]
which selects the hypothesis with the maximum a pos-
teriori probability.

We assume that impulse errors are sparse and that
we can have at most one error within a few consecutive
windows of the received data. Each possible position of
an impulse error within a window of the received data is
considered as a separate hypothesis. The null hypoth-
esis means that there no impulse errors. We note that
in the first window [y%(—Lp)...y5[—1]] is a zero vec-
tor. As we assume that there is no error propagation
the first LpN samples in the proceeding data windows
are corrupted only by quantization noise. The effective
window size for impulse error localization and correc-
tion is therefore M N samples. That is, we consider
M N + 1 hypothesis: null hypothesis Hy and hypothesis
H;, i =1,... M N which says that there is an impulse
error in position NLp + ¢ within the window of the re-
ceived data y%.

The joint probability density function (p.d.f) of the
syndromes under hypothesis H; is a multivariate Gaus-
sian distribution given by

Plos o0 | Hi) = pyormsamayms® - (g)
exp(|~§(87 - §)TM; (87 - 87)))
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where in order to simplify the notation the D = (N —
K)M elements in S7 are denoted by s1,...sp, M; is the
syndrome covariance matrix under hypothesis i and S’
is a vector of syndromes mean values under hypothesis
H;. The M; and S’ are given by

M, = E{S'S/" | Ho} = Pdiag{02,...,02}PT
M; = B{s/ST | H) = P(diag{ag, B
+diag{0, ... ,0,02,0,... 0}) p7
S/ = E{S/ | H;} = E{Py%} | Hi} =0
The a posteriori probabilities of each hypothesis can be
calculated as

p(H, | S15---

p(Is1,...,5p|1)pa (Hi) (10)

’SD) = p(81,...,8D)

where p,(H;) is the a priori probability hypothesis H;.
These are calculated as p,(Ho) = (1 — p)M¥ and
pa(Hj) = (1=p)MN=1p, j=1,..,MN.

4.2 Error Tracking

Due to the memory of the convolutional code the er-
rors can be tracked by considering syndrome segments
Sit+l .. Si+Lr ynder the same set of hypothesis as in
the window corresponding to S/. That is, the hypoth-
esis testing should indicate the same error location in
respect to window S7 for each of these syndrome seg-
ments. We therefore introduce a parameter T' which
specifies how many times the error location has to be
confirmed in order to be considered as a true error loca-
tion. The tracking of errors is necessary if the structure
of matrix P in Eq. (8) is such that not all error positions
can be detected by considering only syndrome segment
SJ.

4.3 Amplitude Estimation

Once located the errors’ amplitudes are calculated by
solving the syndrome equations in Eq. (5) in the least
square sense. Since impulse errors are sparse one can
consider additional syndrome equations in order to have
better estimate of the error amplitudes. Considering ad-
ditional syndrome equations is necessary when the ma-
trix P in Eq. (8) is such that the system of syndrome
equations in Eq. (5) is underdetermined for some error
positions. For the amplitude estimation we consider a
set of equations corresponding to a following syndrome

T
segment (17 s7[j + M] sTlj + M + E— 1]
where E is a parameter which determines the number

of additional syndrome equations.

5. MESSAGE RECONSTRUCTION

It has been shown in [8] that if the output of an OFB is
corrupted by a quantization error which can be modeled
by an additive white Gaussian noise and if the noise se-
quences in different channels are pairwise uncorrelated
the pseudoinverse is the best linear reconstruction op-
erator in the mean square sense. Assuming that after
impulse error correction the received sequence is cor-
rupted only by the quantization noise, the message is
reconstructed by applying the pseudoinverse receiver.

The polyphase matrix of the synthesis filter bank
corresponding to the pseudoinverse receiver is obtained
as

R(z) = [E(z)E(z)] TR (11)

6. PERFORMANCE RESULTS

As current signal compression systems already use crit-
ically sampled filter banks for signal decomposition, the
simplest way to introduce redundancy at this point in
the system is to use a subsampling factor which is small-
er than the number of channels.

Here we consider an application of the presented de-
coding algorithm to an image coding system with sub-
band signal decomposition by a NV = 2 channel biorthog-
onal 9/7 wavelet filter bank. The 16 subband image
decomposition is obtained by performing vertical and
horizontal filtering two times. The redundant signal
representation is obtained by removing the downsam-
plers in the last horizontal filtering stage. Therefore
each subband is protected by an (N, K) = (2,1) over-
sampled filter bank code with the generator and parity
check matrix given by

E(z) = [Ho(2) Hi(2)]" P(2) = [Hi(2) —Ho(2)]

where Hy(z) and H;(z) are the z transforms of the two
channel wavelet filter bank impulse responses. The sub-
band signals are quantized with a scalar quantizer with
a dead zone and quantization step sizes corresponding
to 6 bits for the lowest (first) subband, 3 bits for sub-
bands 2-3, 2 bits for subbands 4-6, and 1 bit for the last
10 subbands. This quantization scheme yields entropy
of 0.66 bits per sample. The channel introduces impulse
noise errors with p = 0.001 and a variance which is hun-
dred times greater than that of the highest quantization
noise variance. The parameter M which determines the
window size is set to M = Lp + 1 = 9 and the pa-
rameter E which determines the number of additional
syndrome equations in the amplitude estimation proce-
dure is £ = 3.

The peak signal to noise ratio (PSNR) for the sys-
tem with no impulse noise errors is 31.9545 dB while the
PSNR for the system with impulse noise errors and re-
construction by a pseudoinverse receiver is 30.8291 dB.

Table 1 shows PSNR, probability of detection Py and
a probability of the false alarm Py for the various values
of the parameter T defined in 4.2. We can observe that

PSNR P, P; T
31.6323 dB  0.7025 4.6319x107%4 3
31.7344 dB  0.7085 2.0356x10~%* 6
31.4659 dB  0.4677 6.6355x107%5 8

Table 1: Performance of the syndrome decoding algo-
rithm for various values of the parameter T

for T = 3 and T = 6 the PSNR and probability of
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detection are approximately the same. Increasing the
parameter 7' to 8 reduces the probability of false alarm,
however, the probability of the detection is reduced as
well which has as a consequence worse PSNR results.

Table 2 shows the performance of the algorithm de-
scribed in [5] and thresholds calculated based on the
mean of the likelihood values under the various hypothe-
sis as suggested in [1]. Clearly the localization procedure
based on the a posteriori probabilities of the hypothe-
sis yields better results. However, the algorithm in [5]
can be seen as more robust as it does not require the
knowledge of the a priori probabilities.

PSNR P, P; T

31.3077dB  0.4731 2.0000x107% 3
31.3970 dB  0.4337 3.0341x107% 6
31.1955 dB  0.2406 1.6158x107% 8

Table 2: Performance of the algorithm described in [5]
for various values of the parameter T

Figures 2 and 3 show the reconstructed image with-
out and with syndrom decoding.

Figure 2: Reconstructed image, no syndrome decoding

7. CONCLUSIONS

It has been shown that an oversampled filter bank can
be viewed as a joint source and channel code as it can
be used for both subband signal decomposition and im-
pulse noise correction. In particular, we have examined
the performance of the syndrome decoding algorithm
where the error localization in presence of the back-
ground noise is treated as an Mary hypothesis testing

Figure 3: Reconstructed image after syndrome decoding
T=6

problem. The error positions are treated as separate hy-
pothesis. Localization procedure selects the hypothesis
with a maximum a posteriori probability.
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