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ABSTRACT

The JADE algorithm (Cardoso and Souloumiac,
1993) is a popular batch-type algorithm for Blind Source
Separation (BSS), which employs approximate joint di-
agonalization (AJD) of fourth-order cumulant matrices,
following a whitening stage. In this paper we propose
a computationally attractive optimization of JADE for
noiseless mixtures, in the form of a post-processing tool.
First, we cast the AJD of 4th- and 2nd- order estimated
matrices as a weighted least-squares (WLS) problem.
We then show (under some commonly met conditions),
that in the vicinity of a non-mixing condition (such as at
the output of traditional JADE), the asymptotically op-
timal WLS criterion can be easily formulated and conve-
niently optimized via a novel algorithm, which uses non-
unitary AJD of transformed subsets of the estimated
matrices. Optimality with respect to general mixing is
maintained, as we show, thanks to the equivariance of
the optimal WLS solution. The performance of the new
algorithm is analyzed and compared to JADE, identi-
fying the conditions for most pronounced improvement,
as demonstrated by simulation.

1. INTRODUCTION

Blind Source Separation (BSS) consists of recovering
mixed source signals, possibly via estimation of the
mixing matrix A in the (noiseless, invertible) mixture
model x[t] = As[t], t = 1, 2, . . . , T , where s[t] =[
s1[t] s2[t] · · · sN [t]

]T

are N unknown, statistically in-

dependent source signals, x[t] =
[
x1[t] x2[t] · · · xN [t]

]T

are the observations and A ∈ CN×N is the unknown
mixing matrix. The term ’blind’ ascribes lack of any
additional information regarding the sources or A.

One of the most popular batch-type algorithms
for BSS is the “Joint Approximate Diagonalization of
Eigenmatrices” (JADE, Cardoso and Souloumiac, 1993
[1]). In its pre-processing stage, JADE applies spatial
“hard-whitening” to the observations, using the inverse
square-root of their empirical correlation matrix, thus
causing the transformed observations to be exactly (em-
pirically) spatially white. Following this decorrelation
stage, the remaining unitary mixing (rotation) factor is
estimated by unitary approximate joint diagonalization
(AJD) [2] of a set of fourth-order cumulant matrices,
estimated from the whitened observations.

While computationally convenient, the “hard-
whitening” stage has been observed ([3, 4, 5]) to limit
the attainable performance, as it essentially attributes
infinite weight to the fit of the estimated correlation
matrix in the AJD process. The exact fit of the diag-
onalization model to the estimated correlation matrix
implies a degraded fit to the estimated cumulants ma-
trices, without proper statistical justification.

In [4] an analysis of the optimal weighting for var-
ious combinations of estimated second- and fourth- or-
der cumulants was presented, and the resulting expected
performance was outlined. However, the framework of
statistic matching in [4] assumes prior knowledge of
some of the sources’ statistics, on which the optimal
weighting depends. Additionally, [4] considers explicitly
only subsets of the full set of estimated correlations and
cumulants, and no specific algorithm is proposed for the
associated nonlinear optimization problem.

In this paper we propose an asymptotically optimal
and computationally attractive algorithm for BSS based
on the full set of estimated second and fourth order cu-
mulants. The algorithm applies (asymptotically) op-
timal weighting to the set, and operates by optimally
decomposing the full AJD problem into smaller sub-
problems, conveniently exploiting a recently-proposed
tool for non-unitary AJD [5]. Yet, in order to allow
tractability of the derivations and of the resulting algo-
rithm, our analysis will be confined to a “non-mixing”
(A=I) condition, showing that optimality is nonethe-
less maintained with respect to any invertible mixing A.
Consequently, our algorithm would operate as a post-
processing tool following any other consistent batch-
type BSS algorithm, preferably a 2nd- and 4th- order
cumulants based algorithm, such as JADE.

The paper is structured as follows: In the following
section we formulate the associated AJD problem and
discuss the equivariance of the optimally-weighted AJD
solution, thus justifying the selection of a “non-mixing”
point for the derivations. In section 3 we consider the
asymptotically optimal weighting, leading to construc-
tion of the proposed algorithm. Performance analysis
and supporting simulation results appear in section 4.

For simplicity, we assume real-valued signals, al-
though the complex-valued case can be similarly con-
sidered, but is beyond the scope of this limited-length
paper. Additionally, we employ the “working assump-
tion” that all sources have zero-mean and unit variance
(see, e.g.,[6] for justification). Two more restrictive, but
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nevertheless common assumptions that we make (nec-
essary to establish the asymptotic optimality) are that
each source is temporally independent, identically dis-
tributed (iid in time) and has zero 3rd-order cumulant.

2. THE APPROXIMATE JOINT
DIAGONALIZATION MODEL

We denote by R = E
[
x[t]xT [t]

]
the observations’ cor-

relation matrix, and by {Ckl}k,l=1,2,...,N their k, l-th cu-
mulant matrix, whose elements are given by

Ckl
mn = cum{xk[t], xl[t], xm[t], xn[t]} m,n=1,2,...,N .

The respective standard time-average based estimates
(see below) will be denoted R̂ and Ĉ

kl
.

Due to the unit-variance “working assumption” and
the multilinearity property of cumulants, we have

R = AAT , Ckl = AΛklAT
k,l=1,2,...,N ,

where {Λkl}k,l=1,2,...,N are, by virtue of the sources’
independence, diagonal matrices, with Λkl

mm =
AkmAlmkm m=1,2,...,N , where km denotes the fourth-
order auto-cumulant (kurtosis) of the m-th source.
Thus, a possible estimation approach is to seek the “best
fit” of this model to the estimated matrices,

R̂ ≈ ÂÂ
T

(1a)

Ĉ
kl
≈ ÂΛ̂

kl
Â

T
k,l=1,2,...,N . (1b)

Two classical approaches to this optimization problem
are (i) The pre-whitening based approach, which fac-
tors Â into a non-unitary and a unitary factor, and
sets the non-unitary factor so as to attain exact equal-
ity in (1a), while adjusting the unitary factor to attain a
Least-Squares (LS) fit in (1b); and (ii) The LS approach
[5], which attempts to attain an overall LS fit to the en-
tire set. Both of these approaches actually propose a
differently-weighted LS (WLS) criterion - however, nei-
ther is optimal. It is well-known (e.g., [7]) that under a
small-errors assumption, the optimal weighting for WLS
(in the sense of minimum mean square estimation error
(MMSE)) is the inverse covariance matrix of the “mea-
surements” (left-hand side estimates in (1a,1b)).

It is therefore desirable to use this optimal weighting
in fitting (1a,1b). Unfortunately, however, the deriva-
tion of optimal weights and solution of the associated
WLS problem appear to be quite computationally in-
tractable in the general case. Moreover, since the op-
timal weights would depend on the unknown sources’
statistics (as well as on the unknown mixing), the nec-
essary estimation of these weights would generally in-
troduce further undesirable complexity.

Fortunately, it turns out that the computational bur-
den can be significantly alleviated when assuming a non-
mixing condition (A = I). Such an assumption is valid
(asymptotically) whenever a consistent BSS algorithm is
applied to the data prior to applying the optimal WLS
approach1. However, it is important to show, that the

1The associated permutation ambiguity is tolerable, since it
merely implies different labeling of the sources; Due to the unit-
variance “working assumption”, we assume no scaling ambiguity.

operation of the “pre-processing” BSS algorithm does
not undermine the optimality of the WLS solution with
respect to the original problem. In other words, while
the WLS solution is (asymptotically) optimal for the
non-mixing case, we need to show that the combined
solution (BSS followed by optimal WLS) maintains the
WLS optimality in any (arbitrary) mixing case.

To show that, let us first define the (N4 + N2) × 1
“measurements vector”, comprised of all the estimated

cumulants and correlations: y
4
=

[
ĉT r̂T

]T

where

ĉ
4
=

[
ĉT
11 ĉT

21 · · · ĉT
12 ĉT

22 · · · · · · ĉT
NN

]T

with
ĉkl

4
= vec{Ĉ

kl
} k,l=1,2,...,N

and r̂
4
= vec{R̂}.

Assuming that the correlations and cu-
mulants are estimated using standard time-
averaging, namely R̂kl = 1

T

∑T
t=1 xk[t]xl[t] and

Ĉkl
mn = 1

T

∑T
t=1 xk[t]xl[t]xm[t]xn[t] − R̂klR̂mn −

R̂kmR̂ln − R̂knR̂lm (for k, l,m, n = 1, 2, ..., N), it is
sufficient to note the following property:

Let v[t] = Bx[t] denote some “transformed observa-
tions”, where B is an arbitrary invertible matrix. De-
note y[v] the vector of cumulants and correlations es-
timated from v[t]. Then straightforward multilinear-
algebraic manipulations reveal that y[v] and y maintain
the linear relation y[v] = W (B)y, where

W (B)
4
=

[
B⊗4 0N4×N2

0N2×N4 B⊗2

]
with B⊗k denoting the k-times Kronecker’s product
B⊗k 4= B ⊗B ⊗ · · · ⊗B (k terms).

Consequently, mixing (or de-mixing) the observa-
tions x[t] with any matrix B merely implies a linear
transformation of the “measurements vector” y. In the
context of a WLS framework, any linear transformation
of the measurements is equivalent to a modified weight-
ing, implied by multiplying the original weight matrix
on the right and on the left by the transformation ma-
trix and its transpose (respectively). Therefore, for any
invertible B (and, subsequently, W (B)), remixing the
observations merely implies an invertible modification
of the weight matrix - and therefore applying the op-
timal weights to the remixed observations is equivalent
to applying the (generally different) optimal weights to
the original observations, since, in a sense, the optimal
weights can “undo” the remixing effect, if necessary.
This property establishes the equivariance of the optimal
WLS solution with respect to the mixing, and enables
to apply the optimal WLS criterion at the output of
any ‘pre-processing” BSS algorithm while maintaining
optimality with respect to the original observations.

3. APPLYING ASYMPTOTICALLY
OPTIMAL WEIGHTING

The unknown parameters in the WLS model are de-
noted θ

4
= [aT λT ]T , where a

4
= vec{A} denotes the
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unknown mixing parameters, and λ encompasses all the
N3 unknown diagonal elements in {Λkl}k,l=1,2,...,N . The
desired AJD model can be formulated as y ≈ h(θ̂),
where h(θ̂) is a nonlinear function of the parameters,
prescribed by the applying the vec(·) operator to the
right-hand side in (1a,1b).

We now divide θ into two groups: parameters of in-
terest and nuisance parameters. Note that not all the
parameters in a are of interest in our setup: In the
vicinity of a non-mixing condition, the resulting Inter-
ference to Source Ratio (ISR) depends only on the vari-
ance of the estimation error of the off-diagonal terms
in A. More specifically, if we define D = Â

−1
A as

the resulting overall “contamination matrix”, then un-
der the unit-power sources assumption, ISRij

4
= E[D2

ij ]
is the residual mean contaminating power of source j
in the reconstruction of source i. Thus, in the vicin-
ity of a non-mixing condition, it is easy to observe that
ISRij ≈ E[Â2

ji], so the only parameters of interest (for
the overall ISR performance) are the off-diagonal ele-
ments in A. Thus, for attaining optimal performance
in terms of ISR, it is sufficient to seek the optimal WLS
estimate of these parameters only. We therefore divide
θ into θoff and θdiag, where θoff contains onlythe off-
diagonal elements of A, and θdiag contains all nuisance
parameters: A’s diagonal elements and λ.

In order to identify which elements of y are relevant
for the estimation of θoff (under a small-errors assump-
tion), we linearize the model y ≈ h(θ) in the vicinity of
the true parameters, denoted θ0. This would also en-
able a small-errors performance analysis later on. The
linearization takes the form

y ≈ h(θ) ≈ h(θ0) + H · (θ − θ0)

where H denotes the derivative matrix of h(θ) with
respect to θ at θ = θ0.

We wish to apply model reduction by eliminating all
observations (elements of y) that are irrelevant to the
optimal estimation of θoff . Note first, that y contains
redundancies, due to recurrence of identical values, such
as R̂ij = R̂ji and Ĉ

ii

ij = Ĉ
ii

ji = Ĉ
ij

ii = Ĉ
ji

ii . However,
due to the second-order structure of the AJD model,
some identical elements are “explained” differently by
this model, and therefore not all recurrences can be
automatically eliminated. Furthermore, the rules for
proper elimination of elements of y must consider not
only the model structure, but also the covariance be-
tween different elements of y. For example, observations
that depend only on θdiag, and are apparently irrelevant
to the estimation of θoff , can only be eliminated if they
are uncorrelated with observations that depend on θoff .

Further details of the elimination process can be
found in [8]. It turns out that the reduced linearized
model can be broken down into a block-diagonal struc-

ture, resulting for all 1 ≤ i < j ≤ N in:

y(ij) 4=

 Ĉ
ii

ij

Ĉ
jj

ij

R̂ij

 ≈

[ 0 ki

kj 0
1 1

] [
Aij

Aji

]
4
= H(ij)θ(ij)

(2)
where y(1,2),y(1,3), ...y(N−1,N) are sub-vectors (com-
prising the reduced observation vector, denoted ỹ)
which contain the only remaining relevant observations,
namely the off-diagonal elements of the estimated cu-
mulant matrices of type Ĉ

ii
and of the estimated corre-

lation R̂.
Fortunately, the asymptotic covariance analysis (at

the non-mixing point) of the reduced observations vector
ỹ reveals ([8]) a corresponding block-diagonal structure
with 3× 3 blocks given by

C(ij) 4= Cov
{

y(ij)
}

=
1
T

 li + k2
i kikj ki

kjki lj + k2
j kj

ki kj 1


where li is related to the i-th source’s sixth moment via
li
4
= E[s2

i ]E[s6
i ]− E2[s4

i ] = E[s6
i ]− E2[s4

i ].
An important conclusion is that in the vicinity of

A = I, optimal weighting can be applied by breaking
the WLS problem into the respective set of individual
N(N − 1)/2 WLS sub-problems, applying to each the
inverse of the respective covariance matrix (3). More-
over, the unknown {ki} and {li} can be conveniently
estimated from the nearly-separated data using straight-
forward time-averaging.

One way to apply the required weight matrix to each
sub-problem, is to apply a linear transformation Q(ij)

to each respective sub-vector y(ij), and then solve an
unweighted LS problem. The required transformation
is given by the (scaled) inverse square root of C(ij),

Q(ij) =

 1
qi

0 ki

qi

0 1
qj

−kj

qj

0 0 1

 , 1≤i<j≤N , (3)

where qi
4
=
√

li.
A convenient tool for solving the resulting un-

weighted LS problem is the AC-DC algorithm [5] for ap-
proximate joint diagonalization. Specifically, in view of
the required linear transformation (3), we seek to jointly

diagonalize the set of three matrices K̂
(ij)

, K̂
(ji)

and
R̂

(ij)
(for each sub-problem), where

K̂
(ij) 4

=
1
qi

Ĉ
(ij)

− ki

qi
R̂

(ij)
, K̂

(ji) 4
=

1
qj

Ĉ
(ji)

− kj

qj
R̂

(ij)

(4)

Ĉ
(ij) 4

=

[
Ĉ

ii

ii Ĉ
ii

ij

Ĉ
ii

ji Ĉ
ii

jj

]
Ĉ

(ji) 4
=

[
Ĉ

jj

ii Ĉ
jj

ij

Ĉ
jj

ji Ĉ
jj

jj

]
(5)

R̂
(ij) 4

=
[

R̂ii R̂ij

R̂ji R̂jj

]
. (6)

The proposed algorithm, given the acronym OFORIA -
Optimal Fourth-ORder Identification Algorithm, there-
fore assumes the following form:
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• Apply a consistent BSS algorithm (preferably
JADE) to the data x[t]. Denote its output v[t].

• Estimate / Calculate (see remark 1 below) R̂ and all
“central” cumulant matrices {Ĉ

ii
} of v[t].

• Estimate all {l̂i}, extract all {k̂i = Ĉ
ii

ii} of v[t].
• For each pair {i, j}1≤i<j≤N :

– Construct the transformed matrices triplet
K̂

(ij)
, K̂

(ji)
, R̂

(ij)
, using q̂i =

√
l̂i and k̂i for qi

and ki (resp.) in (4-6);
– Apply non-unitary, unweighted LS AJD to the

triplet, and denote Â
(ij)

the 2×2 estimated mix-
ing, resolving scale, permutation and sign ambi-
guities (see remark 2 below);

– Place the elements Â
(ij)
11 , Â

(ij)
21 , Â

(ij)
12 , Â

(ij)
22 in their

respective locations Âii, Âji, Âij , Âjj in the N ×
N estimated matrix.

• Denote Âo the resulting estimate of the N×N resid-
ual mixing.

• The separated sources are ŝ[t] = (Âo)−1v̂[t].

Remarks:

1. If JADE is used at the initial stage, and involves estimation
of the full set of cumulants, then the cumulants of v[t] can be
calculated directly from that set (rather than re-estimated
from the data), exploiting the multilinearity of cumulants
(and their estimates) as discussed in section 1. Additionally,
due to the hard-whitening applied by JADE, the empirical
correlation matrix of v[t] is known to be I, and needs not be
re-estimated either.

2. The scale, permutation and sign ambiguities in Âij are re-
solved by ordering and rescaling its columns such that its di-
agonal is all-ones and contains the leading elements.

4. PERFORMANCE

Under the small-errors assumption, the covariance in
the estimation of the elements of A, and hence the ISR,
can be predicted analytically from the linearized model
and the known covariance matrix of ỹ. Exploiting the
block-diagonal structure (at A = I), we obtain

Cov{θ̂
(ij)

} =
[
H(ij)T C(ij)−1H(ij)

]−1

=
1
T

[
1 + k2

i /l2i 1
1 1 + k2

j /l2j

]−1

ISRopt
ij = Var{Âij} =

1
T
·

lilj + lik
2
j

lik2
j + ljk2

i + k2
i k2

j

(7)

as the optimal ISR attained asymptotically by the op-
timal WLS solution at A = I, as well as at any other
A, due to the equivariance of the optimal WLS solution
as discussed in Section 1. Likewise, the performance of
JADE can be shown ([3],[8]) to be given by

ISRJADE
ij =

1
T
·
k4

j + lik
2
i + ljk

2
j

(k2
i + k2

j )2
. (8)

The most pronounced improvement in ISRij is attained
by OFORIA when sources i, j are both sub-Gaussian
(with small li, lj), or when source i is sub-Gaussian and

source j is super-Gaussian. The advantage of OFORIA
is less significant when both sources are strongly super-
Gaussian, and is negligible when either of them tends
to Gaussianity (or to any other null-kurtic distribu-
tion). Obviously, however, OFORIA is always (asymp-
totically) at least as good as JADE, due to its optimality.

To demonstrate the performance improvement (and
support the analysis) we present simulation results for
the following setup: N = 4 sources were mixed using
randomly generated2 mixing matrices A. The sources’
distributions (all zero-mean, unit-variance) and their re-
spective values of ki and li were:
1. Uniform: between −

√
3 and

√
3; k1 = −1.2, l1 ≈

0.6171 (sub-Gaussian);
2. Laplace: double-sided exponential with parameter√

2; k2 = 3, l2 = 6 (super-Gaussian);
3. Standard Gaussian: k3 = 0, l3 = 6 (Gaussian);
4. Gaussian mixture (GM): two equi-probable Gaus-

sians with means ±1 and variance 0.2 (down-scaled
by

√
1.04 to maintain unit variance); k4 ≈ −1.8491,

l4 ≈ 0.1644 (sub-Gaussian).
JADE was applied to the mixed data of length T =
1000, followed by application of OFORIA. Empirical
ISR results are summarized in Table 1, along with the
analytically predicted values.

Uniform Laplace Gaussian GM
Uniform J - -23 (-23) -32 (-34) -32 (-33)

O - -33 (-34) -33 (-34) -35 (-35)
Laplace J -25 (-23) - -23 (-22) -26 (-25)

O -30 (-29) - -23 (-22) -31 (-30)
Gauss. J -28 (-28) -22 (-22) - -30 (-30)

O -28 (-28) -22 (-22) - -30 (-30)
GM J -38 (-38) -25 (-24) -40 (-43) -

O -43 (-43) -43 (-43) -43 (-43) -

Table 1: ISR results [dB] for JADE (J) and OFORIA (O), av-
eraged over 1000 trials. Theoretically predicted values from (7),
(8) appear in parentheses.
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