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ABSTRACT

In estimation theory, the asymptotic
(in the number of samples) efficiency of the Maximum
Likelihood (ML) estimator is a well known result [1]. Nev-
ertheless, in some scenarios, the number of snapshots may be
small. We recently investigated the asymptotic behavior of
the Stochastic ML (SML) estimator at high Signal to Noise
Ratio (SNR) and finite number of samples [2] in the array
processing framework: we proved the non-Gaussiannity of
the SML estimator and we obtained the analytical expression
of the variance for the single source case. In this paper, we
generalize these results to multiple sources, and we obtain
variance expressions which demonstrate the non-efficiency
of SML estimates.

1. INTRODUCTION

In array processing, the asymptotic performances of the SML
estimator are well known when the number 7' of observa-
tions tends to infinity [3]: it is asymptotically efficient and
Gaussian. This work addresses the problem of the SML be-
havior for a finite number of samples when the SNR tends
to infinity: this is the meaning of asymptotic in this paper.
We have recently shown that in this particular scenario, the
SML estimator is non-Gaussian. We also derived its asymp-
totic distribution in the single source case: it is a Student
distribution. Furthermore the asymptotic variance shows the
non-efficiency of the SML estimator [4]. This paper extends
this analysis to the multiple sources case: the two sources
case is fully addressed by deriving the asymptotic variance
of the SML estimates: a comparison with the Stochastic
Cramer Rao Lower Bound (SCRLB) shows the asymptotic
non-efficiency of the SML estimator.

This paper is organized as follows. Section 2 presents the
signal model and the background of our work. The SCRLB
is briefly recalled in section 3. The variance in single and
two sources cases are derived and compared to the SCRLB in
section 4. To confirm our results, simulations are performed
in section 5. Finally, conclusions are given section 6.

2. MODEL AND BACKGROUND
2.1 Notations

The notational convention adopted is as follows: italics indi-
cates a scalar quantity, as in 4; lower case boldface indicates
a vector quantity, as in a; upper case boldface indicates a
matrix quantity, as in A. The n-th row and m-th column of
matrix A will be denoted by (4, ). O {4} is the real part of

A. The complex conjugation of a quantity is indicated by a
superscript * as in A*. The matrix transpose is indicated by a
superscript T asin AT, and the complex conjugate plus matrix

transpose is indicated by a superscript 1 as in AH = (AT)".
P

|4| indicates the absolute value of 4. Tr{A} = S (4;;) is
=

i=
the trace operator of the P order matrix A. Diag{A4,42,---}
is the diagonal matrix built with 4;,45,---. © denotes the
Hadamard product (element by element product). E[] de-
notes the expectation operator. I, is the identity matrix of
order M. T (-) denotes the Gamma function'. »F (a,b;c;z)
is the Gauss hypergeometric function [5] such as:

L T ZT(a+kT(b+k)zF
2F1(“’b’c’z)_r(a)r(b)kzo Clcth) &

(1

2.2 Parametric data model

Let us consider the classical problem of localizing N sources
with an array of M > N sensors and a narrow-band far field
source impinging on it. The vector x(¢) of sensors outputs is
given by the following equation [6]:

x(t) = A(Bo)s (1) +n (1), 2

where + = 1,2,---,T and T is the number of snapshots.
6 :[91,92,--~,9N]T denotes the candidate vector of the
N Directions Of Arrival (DOA) whose exact value is 6.
A(0)=1[a(6:1),a(62),---,a(6Oy)]is the M x N steering vec-
tors matrix. s(¢) is the N x 1 vector of the signals emitted by
the N sources. n(¢) is the M x 1 noise vector.

2.3 Assumptions

The following assumptions will be made:

Al The signal s(¢) is complex, circular, Gaussian, spatially
and temporally white with zero mean and covariance ma-
trix 3y = E [s (1) s (t)ﬂ .

A2 The noise n(¢) is complex, circular, Gaussian, spatially
and temporally white with zero mean and covariance ma-
trix 3, = O'le.

A3 The signals sources are uncorrelated.

A4 V0, [|a(0)] = 1.

IM(z) =f e dr.
0
Ifze N, T (z) = (z—1)!
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2.4 Background

Let us denote the SML estimator by 0 and 6 =
%(@—60). We have shown in [2] that when g — 0

(for fixed sources power), 6 is asymptotically distributed as
Cy where y is a N x 1 standard Gaussian vector and C is a
N x N random matrix independent of vector y. The matrix C
is such that:

CCT:% (D {H(Q)@E}})'l, 3)

where 3 is the sample covariance matrix of sources sig-
nals. f]sT is a N x N random matrix which follows a complex
Wishart distribution [7] with 7 degrees of freedom and pa-
rameter matrix the covariance X of sources signals s(7). H
is a N X N deterministic matrix which contains the informa-
tion about the DOA and the array structure:

H(6) =D" (6) [Ly — A(6) (A" (8)A(6) ' A"(8)| D(6).
“4)
‘ da(0) _ 0a(B)
o=6,” 99 © 98 gy |’
The asymptotic (as 0 — 0) covariance of 0 is given by:
o (8) = e |(0{n@est)) | o

3. CRAMER RAO LOWER BOUND AT HIGH SNR
Following [6], the SCRLB can be written:

with D(6)= [ 9a(6) ‘6:62 -

2
2T

(0{Ho (mA(0)5'A() zs)T})fl,

(6)

Bsto =
where H is defined in (4).

Let us study the asymptotic behavior of (6) when the
SNR tends to infinity. We will show that:

o1 1 »
lim —Bsto = 5= (O{HO3}) . )
Proof- 1t is easily shown that in (6):
-1
AT(0)5'A(0) = (B, + 07 (AM(0)A(0) ) . ®

which tends to X! when 02 tends to 0. This proves (7). O

Remark: In the particular case of assumption A3,
the sources signals covariance matrix X is diagonal:
X = Diag{X,%,... Xy}. Therefore, the SCRLB (7) can

be written with the notation H,I:m =0 {(H )

n,m (*

1 1 1
li , e )
o—0 O 2T HF121 H§222 HAI}_NZN }

)

1 1
m TBSTO = Diag{

4. VARIANCE AND NON-EFFICIENCY

We will start by recalling the analytical expression of the
asymptotic SML estimator variance for the single source case
together with a concise proof. Next we will address the much
more involved case of two sources for which we derive an
original explicit expression of the SML estimates asymptotic
covariance matrix (5). It can be also shown that the SML co-
variance matrix in the multiple sources case can be obtained
in practice by using the single and two sources expressions:
however due to space limitation we will not address this point
in this paper.

4.1 Single source case

Theorem 1. When N =1, X5 = 2| and matrix H
(in equation (4)) is a scalar 4. The asymptotic variance of 6
is given by:
~ 1 1
0) = —_— 10
a6 = T T (10)

This expression can be rewritten in terms of the asymp-
totic SCRLB (9) as:

(11)
_1im B
where k —élg%) =32

Proof: By applying the results of section 2.4 to the

single source case, we see from equation (3) that 8 is
asymptotically distributed as cy with:

|
2
T aThy

(12)

T
and v = 1 kzl |s (k)|* is distributed as 22—} times a chi-square

random variable with 27 degrees of freedom (according to
A1l). Therefore:

~ 1 1
var(e) = EE |:)(%T:| 5

where X3, is a chi-square random variable with 27" degrees
of freedom. According to [8], E [1/X3;] = 2T —2: this
completes the proof. [J

(13)

Corollary 1: The SML estimator is not asymptotically
efficient since % > 1. Furthermore, the minimal number
of snapshots is 7 = 2. Indeed, if 7 = 1 the variance grows
to infinity.

4.2 Two sources case

Most arrays met in practice possess two geometric proper-
ties: they have both a center and an axis of symmetry. This
is for instance the case of the Uniform Linear Array (ULA)
and the Uniform Circular Array. We will assume that these
conditions are met. Under these assumptions, the matrix H
of equation (4) is real. We will consider in our analysis the
case of two symmetric sources 81 = —0, . In this case H has
the following structure:

_f h h
ne (B )

(14)
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Theorem 2: The asymptotic covariance of 6 is finite for 7 > 2
and it is given

N 11 o (NP 11
COV(G)—ET_lel <171,2T, (E) )Dlag{hlz'l7hlz'2}7
. T %
cov (e) — 2R (1,1;2T; <}:> )K, (15)

with K= lim BsIo.
g—0 9

Proof According to (5), and with the assumptions about the
array geometry, we have:

co(8) = sp&|(nen{sr))

- %E {(H@D{W})*‘}, (16)

where W is a N x N random matrix which follows a complex
Wishart distribution with 7" degrees of freedom and param-
eter matrix the covariance, 3g = Diag{ X, 2>}, of emitted
signals s(¢) [7].

Therefore, with assumptions Al and A3, Wr = 0 {W}
is a N X N random matrix which follows a real Wishart dis-
tribution with 27 degrees of freedom and parameter matrix
the covariance § 3 of the emitted signal s(t). Wg is a sym-
metric positive definite matrix. Therefore, we can use the
Cholesky factorization: Wr =DDT, with:

(P O
D_( o pz)' (17)

According to [8], the elements of D are distributed as

follows?:
P N\/Xz (2T7%),
p2~1/X2(2T71,%), (18)

)X
a~N(0,72>,

where p,, p,, and o are independent.
The covariance of 8

=\ var(él) Y
cov (9) = ( W var(8) ) ) (19)
is given by %E [(H@WR)A} where:

mown ! =g (M0

—hpa
ol pa ) (20)

hp3

with ® = hip? (p3 +a?) — (hp,a)”.

2The following notations are used:
~ means “distributed as”.
N(0,¢€) is a Gaussian distribution with mean value 0 and variance €.

t
Chi-square distribution: x?(,€) = ¥ z2 with z; ~ N(0,€). ¢ is the num-

ber of degrees of freedom of the chi-square distribution.

First, we will calculate the expression of var(01):

~ 1 1 1
var(01) = —F | 5 ———— | » (21)
( ) 2h p%17<h72>2 a2
hi ) a?+p3
where a? ~ x? (l, %), and the ratio 2"—22 = Z follows a
o2+p

standard Beta distribution with 1 and 27 — lzdegrees of free-
dom [5] which is independent of ¥ = p3. Therefore, (21)
becomes:

N 1 1 1 L b
0)=-E|-|E|—— =22 (@
val”( 1) 2]’11 |:Y:| 1_(1172)22 zhl ( )
SN—— hl
I S——
1)

Both following integrals /; and /, must be calculated:
11/?;nngy)dy,
L= / 1 Mg(z)dz,
Py

where MM, (y) and Mg(z) are respectively the probabil-
ity density functions of a chi-square random variable

x> (ZT, %) and a beta random variable 3 (1,27 — 1):

(23)

I 24)

_Z
My (v) = W)’F% o,
Mp(z) =T —1)(1—z)*" Y.

When T > 2, I} converges: it is a Gamma function. [, is
a particular case of the integral representation of the Gauss
hypergeometric function( [S] pp. 556-565)

1
oF (a,b;652) = s /Otb_l (1= (1 —12)4ds,
(25)

2
wherea=1,b=1,c¢c=2T and z = (%) . (25) is finite
when 7' > 2. Finally:

L=
(T-1)x;°
{ [2 =2F1 (171;2T;(%)2). (26)

Therefore, the variances of the first and second source
(by symmetry) are:

2F <1,1;2T;(’,,’—§)2

var(él) = TS
2(T 1)/!151 5 (27)
. 2F1<1,1;2T;(ﬁ) )
var(83) = 2T—1h 5,

It can be easily shown that ¥ = 0 (19): it is the integral
from minus infinity to plus infinity of an odd function.
According to (9) the SCRLB for the two sources case is:

1 1 1 1
lim —B = —Di —_— - 28
01310 o? STO 2T lag{hlﬂl ’ h]EQ } ( )
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Therefore, using (19), (27) and (28) we obtain (15). O

Corollary 2: The SML estimator is not asymptotically
efficient since % > 1, and »F (1,1;¢;2) > 1 when ¢ > 2
and z < 1 in 15. Furthermore, the minimum number of
snapshots is 7 = 2. For otherwise integrals /; and /; in
equation (23) diverge.

5. SIMULATIONS

Let us consider a Uniform Linear Array (ULA) of four sen-
sors (M = 4) with half-wavelength spacing. We first investi-
gate the single source case. Secondly, the two sources case
is addressed. Monte-Carlo simulations are conducted with
a Gauss Newton algorithm with 10000 independent realiza-
tions.

5.1 Single source case

Let us consider the DOA estimation of a single source lo-
cated at zero degree (8¢ = 0) with respect to the array broad-
side. The number of snapshots is 7 =2 . Figure (1) rep-
resents the empirical variance of the SML estimator, the
SCRLB and the theoretical variance given by (10). Here, the
variance is twice the SCRLB since % = 2. There is a very
good agreement between theoretical results and simulation.

5.2 Two sources case

Let us now consider the case of two sources with
same power located at -7.5 degrees and 7.5 degrees
(the half-power bandwidth is 22 degrees). The SML DOA
estimation is performed with 7=2 snapshots. We have re-
ported in Figure (2) the evolution of the SML theoretical
variance (27), and the SCRLB. We note a good agreement
between theoretical results and simulations. We can also note
the non-efficiency of SML at high SNR.

6. CONCLUSIONS

In the array processing framework, we have investigated the
behavior of the SML estimator for a finite number of sam-
ples at high SNR. After recalling recent results on the non-
Gaussiannity of the SML estimator in this context, we have
addressed the study of the bearing estimates covariance. We
have obtained an original analytical expression of the SML
estimator covariance for a finite number of samples at high
SNR in the two sources case. This expression can be in-
terpreted as the product of the SCRLB with a magnification
factor involving only the number of snapshots and the array
geometry through a Gauss hypergeometric function.
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