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ABSTRACT
Multiuser wireless communications based on orthogonal fre-
quency division multiplexing (OFDM) technique have two
pronouncing advantages. First of all, the equalizer design at
the receiver is facilitated by converting the frequency selec-
tive fading channel into parallel flat fading channels. More-
over, by providing each user with a non-intersecting fraction
of the available number of subcarriers, multiple-access inter-
ference (MAI) can be mitigated. However, a serious draw-
back in this communication scheme is that some subcarriers
may be subject to deep fading in the frequency domain. In
this paper, a linear precoding technique is proposed in or-
der to solve this problem. The design of our linear precoder
is based on the cutoff rate criterion and, in contrast to other
existing precoding techniques, only the knowledge of the av-
erage relative power and the multipath delays is required at
the transmitter.

1. INTRODUCTION

Multiuser wireless communications based on orthogonal fre-
quency division multiplexing (OFDM) is a very promising
multiuser communication scheme. By providing each user
with a non-intersecting fraction of the available number of
subcarriers, multiple-access interference (MAI) is mitigated.
Therefore, a larger system capacity can be achieved [1].
Moreover, due to the inverse fast Fourier transform (IFFT)
at the transmitter and the fast Fourier transform (FFT) at the
receiver, the frequency selective fading channel is converted
into parallel flat fading channels [2]. This greatly facilitates
the equalizer design at the receiver. However, a well known
disadvantage of OFDM scheme is that, in each frequency
subcarrier, the channel may be subject to a deep fading. This
makes a reliable detection of the information-bearing sym-
bols at this subcarrier very difficult. Therefore, the overall
performance of the system may degrade in such a case.

A popular recent approach to solve this problem is to use
linear precoding at the transmitter [3]. In [4], another lin-
ear precoder has been proposed which is referred to as the
maximum diversity advantage precoder. This work has been
followed by [5], where a linear precoder has been designed
based on the pairwise error probability (PEP) criterion. In
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our paper, we also adopt the idea of linear precoder, but in
contrast to [4] and [5], our linear precoder is designed based
on the channel cutoff rate criterion, which can be viewed as
a sort of lower bound on the Shannon channel capacity. To
design our linear precoder, only the knowledge of the av-
erage relative power and delay of the multipath channels is
required at the transmitter. This knowledge can be obtained
in practical communication systems through a low-rate feed-
back channel1.

2. SYSTEM MODEL

We consider a cellular communication system with M mo-
bile stations (MS) in a certain cell. The frequency selective
wireless channel between the base station (BS) and the mth
MS at time t can be modelled as

hm(t,τ) =
Lm

∑
l=1

hm,l(t)δ (τ− τm,l)

where hm,l(t) and τm,l (l = 1, · · · ,Lm) are, respectively, the
channel gain and delay of the lth path, and Lm is the total
number of paths. We assume that hm,l(t), l = 1, · · · ,Lm are
independent but not necessarily identically distributed zero-
mean complex Gaussian random variables. We also assume
that N subcarriers are used. Let the mth MS use Nm subcarri-
ers and no subcarriers are shared between different MSs, i.e.,
N = ∑M

m=1 Nm. Let the subcarriers assigned to the mth MS be
denoted as f 1

m, · · · , f Nm
m where f n

m is the nth subcarrier used by
mth MS.

In this paper, the downlink mode is considered 2. The
block of information-bearing symbols sm = [sm(t), · · · ,sm(t +
Nm − 1)]T of the mth MS corresponding to the time slot
t, . . . ,(t + Nm− 1) is first precoded by a square matrix Tm
(by using a square precoding matrix we do not sacrifice the
data rate). Then the precoded symbols are passed through
a subcarrier group selection matrix Θm = [e1

m,e2
m, · · · ,eNm

m ],
where en

m, n = 1, · · · ,Nm denotes the N×1 vector which has
one in the entry that corresponds to the nth subcarrier as-
signed to the mth MS and zeros elsewhere [2]. After this, N
symbols for M MSs are IFFT-modulated and the cyclic pre-
fix (CP) is inserted to form one OFDM symbol. We assume
that the length of the CP is longer than the maximum path

1Although the channel state variations can be very fast due to small-scale
fading, the power and multipath delay variations are typically much slower
[1].

2Our results can be extended to the uplink mode as well.
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delay among τm,l , l = 1, · · · ,Lm, m = 1, · · · ,M. Finally, each
symbol is pulse-shaped and transmitted through the channel.
We also assume that the channel remains fixed during one
OFDM symbol time. For the simplicity of our subsequent
consideration, hereafter, the time dependence of hm,l and sm
is omitted.

After removing the CP, the received signal block ym at
the mth MS can be written as

ym = HmFH
M

∑
i=1

(ΘiTi
√

Eisi)+ ñm (1)

where Ei denotes the transmit power of the symbol for the ith
MS, F is the N×N FFT matrix, Hm is the circulant channel
matrix between the mth MS and BS with its (k, l)-th entry
given by hm,(k−l+1)modN , and ñm is the additive white Gaus-
sian noise (AWGN) at the mth MS whose variance is σ2

m.
After the FFT operation, the corresponding subcarrier group
of mth MS is selected by matrix ΘT

m. The resulting output
symbol vector is given by

rm = ΘT
mFym (2)

Inserting (1) into (2) and using the fact that ΘT
i Θl =

0Ni×Nl ∀ i 6= l, we obtain

rm =
√

EmFHmFHTmsm +nm (3)

where nm = ΘT
mFñm. Obviously, E{nmnH

m}= σ2
mINm .

From (3), we can see that the signals received at the mth
MS do not contain the signal components from other MSs.
Therefore, the MAI is mitigated. Due to the circulant struc-
ture of matrix Hm, FHmFH is a diagonal matrix [2]. We
denote it as Dm = diag(d1, · · · ,dNm). Then, equation (3) can
be rewritten as

rm =
√

EmDmTmsm +nm

In this paper, we assume that the maximum likelihood
(ML) receiver is used to restore the vector sm (the block of
information-bearing symbols), and we design the precoder
matrices Tm, m = 1, · · · ,M which maximize the channel cut-
off rate.

3. LINEAR PRECODER BASED ON THE CUTOFF
RATE CRITERION

The channel cutoff rate R0 is a lower bound on the Shannon
channel capacity, beyond which the sequential decoding be-
comes impractical [6], [7]. R0 also specifies an upper bound
of the error rate of an optimal (ML) decoder. The cutoff rate
has been frequently used as a practical coding limit because it
can be calculated in a simpler way than the channel capacity.
Due to these facts, cutoff rate represents a proper criterion
for the design of linear precoders.

We assume that the constellation used at the BS is dis-
crete. The MSs know the channel state information (CSI)
perfectly and the unquantized demodulation is used. The
conditional probability density function of the received sig-
nal can be written as

f (rm|s(i)
m ,Tm,Dm)

=
1

(πσ2
m)Nm

exp

(

−‖rm−
√

EmDmTms
(i)
m ‖2

σ2
m

)

(4)

where s
(i)
m is the ith member of the transmit vector constel-

lation used for the mth MS, and ‖ · ‖ denotes the Frobenius
norm of a matrix or the Euclidean norm of a vector. It can be
seen that only the index i of the block of information-bearing
symbols in f (rm|s(i)

m ,Tm,Dm) is essential for the following
derivations. Hence, for the sake of simplicity, in the sequel
we denote f (rm|s(i)

m ,Tm,Dm) as f (i). The cutoff rate can be
calculated as [6, p. 361]

R0 =− logEDm







∫

rm

[

1
ANm

ANm

∑
i=1

√

f (i)

]2

drm







=− log

[

1
ANm

+
1

A2Nm

ANm

∑
i=1

ANm

∑
l=1;l 6=i

EDm

{

∫

rm

√

f (i) f (l) drm

}

]

where A stands for the constellation size and E{·} is the sta-
tistical expectation. Inserting (4) into the latter expression,
after some manipulation we obtain

R0 = − log

[

1
ANm

+
1

A2Nm
(5)

·
ANm

∑
i=1

ANm

∑
l=1;l 6=i

EDm

{

exp

(

−Em‖DmTm(s
(i)
m − s

(l)
m )‖2

4σ2
m

)}]

Using the theorem from [9], the expectation in (5) can be
explicitly calculated as

EDm

{

exp

(

−Em‖DmTm(s
(i)
m − s

(l)
m )‖2

4σ2
m

)}

=
r{Ei,l}

∏
k=1

(

1+
Em

4σ2
m

λk

)−1

(6)

where Ei,l = EDm{DmTmei,le
H
i,lT

H
mDH

m }, ei,l = s
(i)
m − s

(l)
m ,

λk is the kth eigenvalue of the matrix Ei,l , and r{·} denotes
the rank of a matrix.

Let us introduce a new vector dm =
[dm(1), · · · ,dm(Nm)]T , which is formed by stacking all
the diagonal elements of Dm into a column vector. Then Ei,l
can be rewritten as

Ei,l = (Edm{dmdH
m})� (Tmei,le

H
i,lT

H
m)

= Rdm � (Tmei,le
H
i,lT

H
m) (7)

where Rdm = Edm{dmdH
m}, and � stands for the Schur-

Hadamard (element-wise) matrix product. Since dm(n), n =
1, · · · ,Nm is the channel gain at the nth subcarrier, we have

dm(n) =
Lm

∑
l=1

hm,l exp

(

− j2πnτm,l

NT

)

where j =
√
−1 and T is the sample time interval of the

OFDM symbol. Consequently, the (n,k)th entry of Rdm can
be calculated as

Rdm(n,k) = E{dm(n)dm(k)∗}

=
Lm

∑
l=1

Pm,l exp

(

− j2π(n− k)τm,l

NT

)

(8)
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where Pm,l is the average power of the lth path relative to the
first path.

Inserting (6) into (5) we obtain

R0 =− log

[

1
ANm

+
1

A2Nm

ANm

∑
i=1

ANm

∑
l=1;l 6=i

r{Ei,l}

∏
k=1

(

1+
Em

4σ2
m

λk

)−1
]

(9)
With all the necessary quantities at hand, our task now is to
design matrix Tm to maximize R0 in (9), subject to the unit
power constraint ‖Tm‖ = 1. In principle, the precoder ma-
trix Tm can be any full rank matrix provided that the power
constraint is satisfied. However, the objective R0 in (9) is
a very complex nonlinear function of Tm, which makes the
optimization with respect to arbitrary Tm intractable. In our
design, we constrain Tm to be a unitary matrix because uni-
tary precoders have the advantage that they do not alter the
Euclidian distance between the entries of the block sm of
information-bearing symbols [5]. We can parameterize the
unitary matrix Tm in the following way

Tm =
1√
Nm

Nm

∏
i=1

Nm

∏
l=i+1

Ti,l
m (10)

where T
i,l
m differs from the identity matrix INm only in four

elements which are located at the intersections of the ith and
lth rows with ith and lth columns. These four elements are
parameterized as

Ti,l
m =

[

cosφil exp(− jϕil)sinφil
−exp( jϕil)sinφil cosφil

]

← i
← l

↑ ↑
i l

where φil ∈ [−π,π] and ϕil ∈ [−π/2,π/2] ∀ i, l. Exhaustive
search, Monte Carlo optimization, or alternative projections
can be performed to obtain the Tm (m = 1, . . . ,M) which give
the maximum R0. If each MS uses a moderate number of
subcarriers (not more than 3 subcarriers per MS), and since
the precoding matrices can be designed for each user inde-
pendently, the total number of real parameters for the mth
user is Nm(Nm − 1) ≤ 6 and the precoder design becomes
practically feasible.

From (7)-(9), it can be seen that only the information
of the average relative power and the delay of the disper-
sive wireless channel is required for the design of our linear
precoder. Although the channel state variations can be very
fast due to small-scale fading, the power and multipath delay
variations are typically much slower [1]. Therefore, a low-
rate feedback can be used to convey this information to the
BS.

4. SIMULATIONS

In this section, we study the performance of the proposed lin-
ear precoder through numerical simulations. The simulation
scenario is based on the ETSI “Vehicular A” channel environ-
ment, which is defined by ETSI for the evaluation of UMTS
radio interface proposals [10]. The total available bandwidth
is divided into N = 64 subcarriers. We provide each user with
2 or 3 subcarriers depending on simulation scenario. BPSK
modulation is used. For the optimization of the precoder ma-
trix Tm, we carry out 105 Monte Carlo trials and pick up the
parameters which maximize R0.
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Figure 1: Cutoff rate versus SNR, 2 sub-carriers per user.
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Figure 2: Cutoff rate versus SNR, 3 sub-carriers per user.

Figures 1 and 2 compare the channel cutoff rate with and
without linear precoding versus signal-to-noise ratio (SNR).
We can see that with linear precoding technique, the SNR
gain around 6 dB is achieved at the cutoff rate of 1.9 bits
compared with the system without linear precoding if each
user is provided with 2 subcarriers. If each user is pro-
vided with 3 subcarriers, then the SNR gain around 4 dB is
achieved at the cutoff rate of 2.8 bits.

In Figures 3 and 4 we compare the proposed linear pre-
coder in terms of the symbol error rate (SER) versus SNR
with the Vandermonde precoder [5] in the cases of 2 subcar-
riers per user and 3 subcarriers per user, respectively. A total
of 1000 Monte Carlo runs are used to obtain each simulated
point. Since both precoders are designed based on the ML re-
ceiver, we show their performance when this receiver is used.
Moreover, we also display the performance of both precoders
when ML receiver is not affordable and computationally ef-
ficient linear minimum mean square error (MMSE) receiver
is used instead.

It can be seen that our linear precoder outperforms the
Vandermonde precoder of [5]. The performance improve-
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Figure 3: SER versus SNR, 2 sub-carriers per user.
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Figure 4: SER versus SNR, 3 sub-carriers per user.

ments are especially pronounced at high SNRs and in the
case of 3 subcarries per user. This conclusion is true not only
for the ML receivers but for the MMSE receivers as well.

5. CONCLUSION

In this paper, a new linear precoder for multiuser OFDM

wireless communications has been proposed. This linear pre-
coder maximizes the channel cutoff rate and mitigates deep
fading which occurs in the frequency domain in OFDM sys-
tems. To design the linear precoder, only the knowledge of
the average relative power and multipath delays is required.
The implementation of the proposed precoder makes use of
a parameterization of the precoder matrix using Givens ro-
tation matrices. Simulation results show an improved per-
formance of the proposed linear precoder compared to the
Vandermonde precoder of [5].
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