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ABSTRACT 

With multiple-input, multiple-output (MIMO) 
transmission, impressive capacity or diversity gains can 
be achieved compared to single antenna systems. We have 
conceived and implemented a generic platform that 
enables real-time wireless MIMO transmission. The 
platform supports the integration and the evaluation of 
transmit and receive spatial multiplexing and spatial 
diversity processing techniques for MIMO-OFDM 
systems in a wireless environment. The platform is based 
on modular multi-FPGA and multi-board designs with 
support for high-speed serial connection links between the 
boards. This paper describes the platform integration of a 
2-antenna base station using MIMO transmit processing 
including special front-end techniques for the exploitation 
of channel reciprocity in time division duplex (TDD) 
schemes.  

1. INTRODUCTION 

MIMO-OFDM is an attractive technique to enhance the 
capacity of future wireless LANs since space multiplexing  
increases the spectral efficiency on top of time-frequency 
and since OFDM modulation mitigates the frequency 
selective channel fading. 
The spatial multiplexing algorithms can be applied in the 
transmitter (pre-compensation) or in the receiver (post-
compensation). The MIMO transmit processing can also 
be used in the base station (BS) as a space division 
multiple access (SDMA) technique to enhance the link 
capacity by serving several single-antenna users at the 
same time and in the same bandwidth.  For both MIMO 
pre- and post-processing techniques the channel state 
information is needed. The analytical performances of 
these spatial multiplexing algorithms are well known. 
However they are based on models of the indoor channel. 
Mostly these models do not include the front-end 
impairments such as phase noise and amplifier non-
linearity. Therefore, new challenges are to practically 
implement the MIMO modem and to quantify the 
enhanced performance in a real wireless transmission link. 
We have developed a real time prototyping platform for 
high data rate communication systems. The platform is 
called PICARD [1]: “Platform for Integrated 

Communication Application, Research and 
Demonstration”.   
The example application on the proposed platform is a 
SDMA system consisting of a 2-antenna BS serving two 
Hiperlan2  WLAN mobile user terminals (MT). The 
system operates at 5 GHz in a bandwidth of 20 MHz and 
supports a maximum downlink data rate of 2 times 54 
Mbps. Existing demonstrators are focussing on spatial 
diversity techniques at the receiver side to enhance the 
capacity and on space time block codes to exploit spatial 
diversity [2].  The SDMA demonstrator, that we are 
building, has the benefit that all the processing power is 
located in the transmitter of the BS while the user terminal 
can remain at low complexity, low cost and low power. 
However, the MIMO transmit processing is more difficult 
to implement because of the lack of instantaneous channel 
information at the transmitter.  In our implementation, the 
channel information is retrieved from the uplink and an 
on-line calibration technique is developed to match the BS 
transmit and receive antenna branches in amplitude and 
phase over the entire bandwidth  
The performance of the SDMA algorithms is evaluated in 
real-time on the platform by emulation of a 2-antenna 
wireless channel. The paper is organized as follows. 
Section 2 gives an overview of the MIMO algorithms with 
transmit processing and describes the impact of non-
reciprocity on the performance. Section 3 discusses the 
front-end calibration technique to exploit the channel 
reciprocity. Section 4 describes the prototyping platform 
and the hardware chosen to construct it. Section 5 outlines 
the integration of a 2-antenna BS using MIMO transmit 
processing with front-end calibration.  An overview is 
given of the required hardware resources for field 
programmable gate arrays (FPGA). Finally, conclusions 
are given in section 6. 

2. OVERVIEW OF MIMO ALGORITHMS WITH 
TRANSMITTER PROCESSING 

The system model is described as an OFDM/SDMA 
system with A antennas at the base station and U single 
antenna terminals. The model applies equally well to a 
MIMO transmit processing set-up with A transmit 
antennas and U receive antennas.  
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In the downlink a per sub-carrier spatial pre-filter is 
applied on the transmitted symbols in order to separate the 
signals for the U user terminals. We consider a class of 
pre-filters that are linear, meaning that pre-filtering is 
achieved by a multiplication of the transmit symbol vector 
by a matrix, as follows: 

 

 nxFHy +⋅⋅= DLDLDL  (1) 
where xDL is the column vector of the U frequency domain 
streams at sub-carrier n transmitted by the BS, yDL is the 
column vector on the A antenna branches of the BS.  For 
the calculation of the pre-filter matrix F, it is assumed that 
the downlink channel is the transpose of the uplink 
channel. In (1) the dependency on the sub-carrier index is 
dropped for clarity. 
In [3] the performance of the zero-forcing and MMSE 
Wiener pre-filters are evaluated based on Monte-carlo 
simulations. For full system load and uncoded QAM-64 
modulation, the MMSE pre-filter outperforms the zero-
forcing filter with a gain of 3dB at 10-3 BER for the 
Hyperlan2 class A channel parameters.  The zero-forcing 
pre-filter attempts to perfectly diagonalize the channel 
matrix and is given by: 

 ( ) ( )
F

1DL1DL
ZF /

−−= HHF  (2) 

The pre-filter is normalized with the Frobenius norm of 
the inverse of the channel matrix such that the total 
transmit power is constant.  Hence, the quality of the link 
decreases when the channel matrix is nearly singular.  A 
better solution than perfect diagonalization consists in 
using a pre-filter that trades off noise and multi-user 
interference. This can be optimally achieved by resorting 
to a Wiener pre-filter, similar to the conventional MMSE 
post-filter. The MMSE pre-filter is given by: 
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where IUxU is the UxU identity matrix and σ² is the 
variance of the receiver noise. This pre-filter allows a 
little amount of multi-user interference, equal to the 
receiver noise. Note that accurate knowledge of σ² is not 
required and a rough estimate is sufficient. 
When the transpose of the uplink channel estimation is 
used to pre-compensate the downlink user interference, the 
channel is assumed to be reciprocal and static for the time-
division duplex  scheme.   The channel is composed of the 
propagation channel between the antennas, the antennas 
themselves and the transceiver RF and analog circuits. 
Taking the transceiver transfer functions at both sides of 
the link into account, equation (1) can be refined to (4): 
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The complex diagonal matrices DRX,BS, DTX,BS, DRX,MT 
and DTX,MT contain the BS and MT front-end transmitter 
or front-end receiver frequency responses as indicated by 

the indices. The matrix H contains the propagation 
channel itself, which is reciprocal.  As can be seen from 
equation (4), solely the transceiver at the BS should be 
matched to have a reciprocal channel, i.e. DTX,BS . 
(DRX,BS)

-1 must be equal to the identity matrix multiplied 
by a scalar. Usually, the RF and analog circuits are not 
reciprocal between the transmit and receive paths. Figure 
1 shows the effect on non-reciprocity in phase and 
amplitude on SDMA downlink for QAM64 modulation 
and Hiperlan2 class A channel parameters. The considered 
OFDM/SDMA system is a BS with 3 antenna and 2 to 3 
MTs. The rms values of the phase difference are indicated 
in the legend. The amplitude difference is derived from 
the phase as projection on the real and imaginary axes. 
The simulation results show that the quality of the link 
degrades significantly for small phase differences. The 
degradation is highest for full system load. This indicates 
that the non-reciprocity causes extra multi-user 
interference (MUI). The matching accuracy in the BS 
between the transmitter RF and analog circuits and the 
receiver RF and analog circuits must be below 0.04 dB 
and 0.25 degrees. 
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Figure 1 BER Performance Degradation due to non-
reciprocity 

3. TRANSCEIVER CALIBRATION 

The tight overall manufacturing and time variation 
matching of the RF and analog circuits between the 
transmitter and receiver are practically not realizable. 
Therefore, we propose a novel calibration loop that 
measures the product DTX,BS . (DRX,BS)

-1 at the BS so that 
the mismatches can be pre-compensated digitally at the 
transmitter.  For on-line calibration purposes a reference 
transceiver is added in the BS. It is connected to the 2 
antenna branches with combiner, splitters and cables. The 
block diagram of the BS with notification of the transfer 
functions is shown in Figure 2. 
The calibration is done in two steps. In the first step a 
FDMA known signal is generated on a subset of the 
OFDM carriers in each transmit antenna and received by 
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the reference receiver. This yields the measurement of the 
following transfer functions: 

 T2xC2xRR  MT2T1xC1xRR,MT1 ==  (5) 

In the second step a known signal is generated in the 
reference transmitter and received by all receiver antenna 
branches simultaneously. This yields the measurement of 
the following transfer functions: 

 TRxC2xR2MR2  TRxC1xR1,MR1 ==  (6) 

Interpolation over the sub-carriers and averaging over 
several known symbols is applied to increase the accuracy 
of the transfer function estimations.  
Finally, the following computation is performed: 
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In these two expressions, the terms T1/R1 and T2/R2 are 
the desired results (ratio of transmitter frequency response 
over receiver frequency response) while the term RR/TR 
comes from the unknown frequency response of the 
reference transceiver. However, since both T1/R1 and 
T2/R2 are multiplied by the same unknown term, this 
does not introduce MUI. This calibration technique has 
been implemented on the PICARD platform. 
For the hardware implementation of the calibration 
algorithm special attention has to be paid on the 
synchronisation offsets and the phase noise offsets 
between the antenna branches.  Synchronisation offsets 
result in a phase slope across the frequency response in 
case of timing offset differences or in a phase shift in case 
of carrier frequency offset differences. It is also required 
that the transfer function measurements are done 
simultaneously over all branches so that the impact of 
phase noise is identical on all branches. When several 
measurements need to be averaged, phase noise 
impairments must be carefully dealt with.  It is therefore 
mandatory to use the same local oscillators and clocks in 
all antenna branches of the BS. In addition, all AGC 
operating points must be calibrated.  
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Figure 2 Block Diagram of the Reciprocity Calibration 

4. REAL TIME OFDM/MIMO PLATFORM  

We have defined platform hardware and software 
concepts to prototype and demonstrate broadband 
wireless systems. It is based on modular hardware boards 
and Linux driver development software. The boards are c-
PCI compliant so that they can be plugged in a 
commercial off-the-shelf rack to build a complete system 
together with a commercial host c-PCI processor board 
(Figure 3) 

 

Figure 3 PICARD system prototyping platform 

The major challenges in the design an MIMO-OFDM 
prototyping platform are the availability of hardware 
resources to implement the complex algorithms and the 
availability of real time high data rate communication 
links between components and between boards.  
Therefore, we have designed two boards following the 
PICARD modular board concepts (Figure 4). It can be 
seen that both boards are derived from the same basic 
schematic netlist.  The two boards are general in the sense 
that both contain configurable hardware (max 2 Xilinx 
XC2V6000 FPGAs [4]) for the implementation of the 
digital part of the MIMO modem and that one board has a 
socket to plug in a daughter board with the antenna array 
RF front-end.   

 

Figure 4 PICARD board library 

A complete MIMO system can be prototyped on the 
platform using one or more boards. The platform concepts 
foresee dedicated high speed data links (1.4 Gbps per 
link) between the boards to transfer the payload data 
without latency. The number of boards depends on the 
required system processing power and the level of 
integration of the antenna array.  For example the antenna 
array can be build as a set of single antenna RF boards or 
can be integrated in one system in package module. We 
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have designed a 5 GHz superheterodyne WLAN 
transceiver with discrete components. It can be used in a 
single antenna system or in a multiple antenna system.  
The platform has the connections to synchronize the ADC 
and DAC sampling clocks of the antenna branches to a 
common clock and to steer the phase locked loops of the 
RF and IF synthesizer with the same reference clock. In 
this way the antenna branches are synchronized in time 
and in phase. 
On top of the physical MIMO modem layer runs the 
Medium Access Control (MAC) layer. The non-timing-
critical functions such as association and authentication 
exchanges or data frame preparation run on the host 
processor. The time critical functions require the MAC to 
act within microseconds of an event or at precise 
intervals. For this purpose, we have designed a soft 
processor core with an optimized architecture and 
instruction set for fast data shuffling. The MAC soft 
processor core can be present on each board of the 
MIMO system. For this, each MAC soft processor core 
has a timer-counter on which their actions are 
synchronized. 

5. EXAMPLE: 2-ANTENNA MIMO USING 
TRANSMIT PROCESSING 

The high-level functional building blocks of the 2 antenna 
BS with transmit processing is shown in Figure 5. 
At transmit side two user streams are turbo encoded and 
are in the “MIMO transmit pre-compensation” unit 
mapped on symbols, MMSE pre-filtered and converted to 
time domain by IFFT. In the uplink the users are assigned 
to separate time slots. The incoming user data streams on 
the 2 antennas are put within the dynamic range of the 
A/D converter by the automatic gain controllers (AGC).  
In the TDMA receiver the timing and carrier frequency 
offset is estimated on the preamble of one antenna and the 
compensation is done on the streams of both antenna.  
The channel is estimated on the preambles for each user 
and for each antenna. These channel estimations are used 
as input to the MMSE pre-filter to calculate the matrix 
FMMSE (3). The remainder of the burst contains the user 
payload data and is in the receiver further demodulated, 
turbo decoded and passed to the MAC layer.  
Two general purpose digital boards are used to integrate 
the turbo codecs, the MIMO baseband transceiver and the 
soft MAC processor. The MIMO transmit pre-
compensation unit is mapped on one XC2V6000. It uses 
49% of the slices and 63% of the multipliers at a 20 MHz 
clock. The TDMA receiver with channel estimator is 
mapped on one XC2V6000. It uses 48% of the slices and 
86% of the multipliers at 20 MHz clock. The channel 
estimator is improved with an interpolator that takes the 
overall channel length into account. .  
The 2-antenna transceiver is build from two single 
antenna 5 GHz front-end boards. The compensation 
techniques for the front-end imperfections are mapped on 
the FPGA of the same board. For performance evaluation 
of the system the antennas are bypassed and the channel 

emulator is mapped on the FPGA. The channel includes a 
9-tap FIR filter modelling a 2x2 antenna multi-path 
channel, an AWGN generator and a carrier frequency 
offset generator.  It takes 48 % of the slices and 77 % of 
the multipliers at 80 MHz clock.  

 

Figure 5 Block diagram of 2-antenna access point 

The antenna array is calibrated on-line by means of a 5 
GHz reference single antenna front-end board. The 
calibration transceiver transmits the known calibration 
signal and calculates the transmitter transfer functions 
MT1 and MT2.  The calibration transceiver function on 
the reference front-end FPGA takes 53% of the slices and 
25 % of the multipliers at 20 MHz clock. The channel 
estimator in the MIMO baseband transceiver unit is 
reused during calibration to calculate the receiver transfer 
functions MR1and MR2. The MAC layer controls the 
scheduling of the calibration and stores the front-end 
transfer functions in memory for each AGC setting.   

6. CONCLUSIONS 

In this paper, we have proposed platform concepts for real 
time prototyping of MIMO systems. Two boards are 
designed.  One board integrates the radio on a front-end 
daughter board. The second board integrates the baseband 
functionality on configurable logic. A 2-antenna MIMO-
OFDM system with a doubled downlink capacity 
compared with IEEE.11a standard is prototyped on the 
platform. An overview of the hardware resources is given. 
The system performance is evaluated in real time on an 
emulated channel model. An on-line calibration algorithm 
to pre-compensate non-reciprocity between the transmit 
and receive antenna branches is proposed and is 
integrated on the platform.  
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