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ABSTRACT

In this paper we propose an on-line Bayesian filtering and
smoothing method for time series models with heavy-tailed
alpha-stable noise, with a particular focus on TVAR models.
We first point out how a filter that fails to take into account
the heavy-tailed character of the noise performs poorly and
then examine how an a-stable based particle filter can be de-
vised to overcome this problem. The filtering methodology
is based on a scale mixtures of normals (SMiN) representa-
tion of the a-stable distribution, which allows efficient Rao-
Blackwellised implementation within a conditionally Gaus-
sian framework, and requires no direct evaluation of the a-
stable density, which is in general unavailable in closed form.
The methodology is shown to work well, outperforming the
traditional Gaussian methods both on simulated and real
audio data. The analysis of real degraded audio samples
highlights the fact that a-stable distributions are particu-
larly well suited for noise modelling in a realistic scenario.

1. INTRODUCTION

In many real signal processing environments, sources of noise
cannot be considered as Gaussian. Here we consider in par-
ticular the estimation of processes observed in heavy-tailed
noise, i.e. noise having occasional very large values that
could strongly affect any inference procedure for the underly-
ing process. We focus on one particular class of heavy-tailed
distribution, the symmetric a-stable class, that can be ob-
tained through a generalisation of the central limit theorem
when the random variables need not have finite variance, see
[7, 22]. Such noise processes have been found appropriate
in a number of areas, including signal processing [20] and
econometrics [23].

We propose methodology for optimal on-line estimation
of stochastic processes observed in a-stable noise. The mod-
els chosen are time varying autoregressions (TVAR), which
are appropriate for a wide range of signals, including speech,
audio, eeg and seismic data. On-line estimation and signal
extraction is performed by means of sequential Monte Carlo
methods [11, 13, 4]. These methods have been applied to
the TVAR model with Gaussian noise in [6, 24, 10]. This
paper constitutes an extension to these approaches (and es-
pecially that of [24]) to the symmetric a-stable case and,
more generally, to any case where the noise distribution
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can be represented as a scale mixture of normals (SMiN).
The SMiN representation of the a-stable class allows us im-
portantly to employ conditionally linear and Gaussian com-
putational methods within the Monte Carlo filter (via the
Kalman filter), hence avoiding any direct evaluations of the
noise density function (which is unavailable in most cases
for the a-stable model). In [9](see also further references
on www-sigproc.eng.cam.ac.uk/sjg) methodology was pre-
sented for inference about static AR models in stable law
noise. Here this methodology is extended to the sequential
Monte Carlo setting for TVAR models in a-stable noise. The
methods are able accurately to reconstruct the signal pro-
cess, the TVAR parameters, and also the stable law parame-
ter a, which is static and thus not easily amenable to particle
filter analysis. A real application of the methods is presented
for audio signal enhancement. We present compelling experi-
mental evidence that the a-stable distribution is appropriate
for certain noise sources in 78rpm gramophone disk record-
ings which are typically degraded by non-Gaussian clicks.
Results are found to be very effective.

The structure of the paper is as follows: we begin de-
scribing the properties of a-stable distributions and propos-
ing that they are more appropriate than other parametric
families in modelling noise in certain audio sources. We
then introduce the statistical model and its state-space rep-
resentation. Bayesian methods are presented for sequential
estimation and filtering and we discuss how symmetric a-
stable distributions can be embedded into this framework.
The approach is then compared to the traditional Gaussian
framework on both simulated data and artificially corrupted
audio samples. An application to real audio data concludes
the paper.

2. o-STABLE DISTRIBUTIONS

The a-stable family of distributions stems from a more gen-
eral version of the “traditional” central limit theorem in
which the assumption of finite variance is replaced by a much
less restrictive one concerning the regular behavior of the
tails [7]; the Gaussian distribution then becomes a partic-
ular case of a-stable distribution. This family of distribu-
tions has a very interesting pattern of shapes, allowing for
asymmetry and thick tails, that makes them suitable for the
modelling of several phenomena; moreover, it is closed under
linear combinations.

The family is identified by means of the characteristic

865



function

_ | exp {idt —y*|t|* [1 — iBsgn(t) tan 2] }
p(t) = { exp}iét oyt [1 4 i3 2sgn(t) In [¢] §

a#l
a=1

(1)
which depends on four parameters: « € (0,2], measuring
the tail thickness (thicker tails for smaller values of the pa-
rameter), 3 € [—1,1] determining the degree and sign of
asymmetry, v > 0 (scale) and § € R (location). To denote
a stable distribution with parameters «, 8, v and § we will
use the shorthand notation S(a, 3,7,0). As in the Gaussian
case, a random variable X with S(a, 3,7, d) distribution can
be standardized to produce

Z = XT_‘S ~ S(a, 3,1,0).

For the standardized stable distribution, we will henceforth
use the shorthand notation S(a, §).

Unfortunately, (1) can be inverted to yield a closed-form
density function only for a very few cases: a = 2, correspond-
ing to the normal distribution, « = 1 and 8 = 0, yielding the
Cauchy distribution, and o = %, B =1 for the Lévy distribu-
tion. This difficulty, coupled with the fact that moments of
order greater than o do not exist whenever a # 2, has made
impossible the use of “traditional” estimation methods such
as maximum likelihood and the method of moments. Re-
searchers have thus devised alternative estimation methods,
mainly based on quantiles [17], the performance of which is
judged unsatisfactory in a number of respects, especially be-
cause they are not liable to be incorporated in complex mod-
els and thus require a two-step estimation approach. With
the availability of powerful computing machines, it has be-
come possible to devise computationally-intensive estimation
methods for the estimation of a-stable distributions, such as
maximum likelihood based on the FFT of the characteris-
tic function, as in [18], or direct numerical integration as in
[21]. These methods, however, present some inconvenience:
the accuracy of both the FFT and the numerical integration
of the characteristic function is quite poor for small values of
« because of the spikiness of the density function; further-
more, when the parameters are near their boundary, their
distributions assume non-standard form, making traditional
confidence intervals unreliable.

Given these computational difficulties, it is perhaps sur-
prising that simulated values from a-stable distributions can
be straightforwardly produced with a simple analytic trans-
formation of two uniformly distributed random numbers [3].
The possibility of a simulation based Bayesian approach was
first put forth in [2], who shows how to devise an auxiliary
variable conditional on which the likelihood can be expressed
in closed form. Unfortunately, simulated values from this
auxiliary variable cannot readily be generated and one must
resort to more elaborate sampling methods. Furthermore,
several reparameterizations are needed in order to obtain
posterior distributions that can be easily simulated from.
This makes the whole procedure quite slow, especially when
large sample sizes are involved.

In the case of symmetric stable distributions, the situa-
tion is much less cumbersome: we can exploit the fact that
a symmetric a-stable distribution can be represented as a
scale mixture of normals (SMiN) [1]; this observation will
enable the efficient conditionally Gaussian simulation tech-
niques proposed later. To put it in a more formal way, let
us consider a generic model with symmetric a-stable noise

€ ~ S(a,0,7,9).

If we introduce an auxiliary white noise u; ~ A/(0,1), where
N(0,1) denotes a standard normal distribution, the above

SMiN property allows us to express the a-stable noise equiv-
alently as

61‘:5-{-’)/\/)\71‘1“, )\iNS(%,l), uiNN(O,l).

where \; and its positive stable distribution S (%, 1) are
known as the mizing parameter and the mizing distribution,
respectively.

Conditionally on \;, we have thus

€1|)\1 NN(5,72)\2'). (2)

and hence in a Monte Carlo environment we will be able to
utilise efficient normal/linear computations while avoiding
entirely the need to evaluate S(«, 0,~,4d). It is worth noting
that this SMiN representation is exact, and does not involve
any approximations such as would be induced through the
use of the better known finite mixture of normals approach
to heavy-tailed noise modelling.

2.1 Justification for use of a-stable distributions in
audio applications

The above theoretical arguments in favor of a-stable distri-
butions are supported in our application by a very good fit to
real noise data. The noisy data is taken from 78rpm record-
ings of ethnomusicological sources carried out by Lachmann
in the early 20th century. An excerpt of just over one second
(44487 observations) of the recording, in which there was
no musical signal present, was extracted and fitted to a sta-
ble distribution, using an approximate maximum likelihood
method based on the FFT of the characteristic function®.
Results are reported in table 1, along with the estimated pa-
rameters for a simple Gaussian and a more standard heavy-
tailed Student’s ¢ model. In figure 1 we report the kernel
density estimate of the dataset and the normal, the Stu-
dent’s t and the stable fitted densities. Although not very
far from normality, the stable distribution provides a much
better fit both in the central part and in the tails of the
distribution with respect to both the Gaussian and the Stu-
dent’s t model. The estimation output of the a-stable model
also highlighted a mild degree of negative asymmetry, but in
order to be able to exploit the mixture of normals represen-
tation we will restrict our attention, in what follows, to the
symmetric case.

Table 1: Maximum likelihood estimates of an a-stable dis-
tribution and test statistics for different null hypotheses.

«a-Stable Student’s t Gaussian
Est. Std. err. Est. Est.
« 1.8352 0.0062 v 5.5145
6 -0.2226 0.0282 u0.1006 pu 0.0166
v 3.6343 0.0108 o 4.6706 o 5.9642
6 -0.0181 0.0173 -1.0457

3. STATISTICAL MODELS

AR processes have been widely and successfully used in the
setting of audio enhancememt [8] (and in many other areas
of signal processing). Here we adopt the time-varying au-
toregressive (TVAR) process, in which the AR coefficients
evolve over time according to certain specified dynamics.
Models of this type have been employed in signal process-
ing by, amongst others, [6], [12] and [19]. The audio signal

1For a more detailed description on how the maximum likeli-
hood procedure is implemented, we refer to [16].
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Figure 1: Kernel density (solid line), Gaussian fit (grey line),
Student’s ¢ fit (dashed line) and a-stable fit (dotted line).

at time ¢ is thus modelled as a TVAR (p) process

p
T =Y gk +0qe, @ ~N(O1), ®3)

k=1

and is burued in symmetric a-stable noise such that the ob-
servations are

Yo =0+ Y, e~ S(a,0), (4)
where o, and <;,, represent, respectively, the standard de-
viation of the innovations in the true signal process and the
scale of the stable noise; both are allowed to be time-varying.
We furthermore assume that €; and 7, are independent. The
time-varying parameter vector of the model thus has dimen-
sion p + 2 and is given by

et:(at7¢€t7¢ﬂt)7 GtG{APX]RXIR}

with
2 2
ar = (alaf7 A2ty vy ap,t) ¢€t =In Oeys ¢Tlt = ln,Ynt;
where A, is the region of stability of a stationary AR(p)

pI‘OCeSS2 .

The above model can be readily expressed in state-space
form. The system matrices are

i
_ ag _ Oet
A = [ I,—1 Or—1x1 ] B = |: Or—1x1 }

C=[1 Ok-1xa] D¢ =[yn]
and, deﬁning it = (Jit, Lt—T1ye--y l’t_p+1),
Xt = At)v(t_l —+ BtVt Vi~ ./\/‘(07 I) (5)
Y = Cf{t + Dtllt ut ~ S(Oé, 0) (6)

Now, exploiting the mixture of normal representation of a
stable distribution (2), we can redefine

D; = [ vA] A ~S(51)

and express (6) exactly equivalently as

Yt = C)v(t =+ DZWt Wi ~ N(O, I), (7)

2This condition is only sufficient and not necessary when deal-
ing with TVAR processes. However, regions of stability for TVAR
processes are much more complex to deal with, so we have decided
to enforce this simpler condition.

so that the model is expressed in conditionally Gaussian state
space form. According to this approach, A; would be treated
as a unknown parameter and incorporated into 6;.

The evolution of 8; over time (excluding A:) obeys a first
order Markov process, whose parameters are assumed to be
fixed and known:

i}

N
5
=)

N
\

P(20)p(¢e )P(Pno)P(Ao)
p(at |at*1)p(¢6t |¢)Et—1 )p((b”lt |¢m—1 )p(At)

N($er_y,62) (8)
N(¢n,_,03)
A O)IaoEAp

(¢Et |¢€t 1

)=
0 P(Pni|bn, 1) =
p(A) =8(5,1)  plao) < N(0,

platlai—1) x N(as—1,Aa)Tasea,-

4. SEQUENTIAL MONTE CARLO METHODS

We have already stated that our main goal is to reconstruct,
on the basis of the observable noisy signal, the unobservable
clean signal. One could be interested in simply obtaining
a point estimate #; for every time interval, but in Bayesian
terms it is much more interesting to focus our analysis on the
filtering distribution p(X¢, 0¢|y1:+) or on the fixed-lag smooth-
ing distribution p(X¢, 0¢|y1:¢+1), on the basis of which we can
construct both point estimates and HPD intervals for z, for
example.

Expressed in the above formulation, the model is not
linear and closed-form algorithms such as the Kalman filter
cannot be employed. However, it is immediately observed
that, conditionally on 6.+, the model is linear and Gaussian;
p(%X¢|00:¢, ¥1:¢) can thus be obtained analytically using the
Kalman filter.

The Kalman filter runs as follows: for k = 1,...,t¢ we first
set the sufficient statistics for the predictive distributions

Akmk—llk—l
ArPj_1 1A% + BB,
Cmyp_1;

My|k—1 (90:k)
Pyji—1 (Box) =
Vie—1 (Box) =
we compute
Sk (0o:x) = CPy—1C' + D;DY/,

and we finally obtain the parameters of the filtering distri-
bution according to

myp—1 + Prpo1C' St (e — Yer—1)
Pkt — Pro1js1C'S; ' CPy 1.

my, (fox) =
Pyx (Bo.r)

The filtering distribution of the state vector is thus
p(%k|Oo:k, y1:k) = N (mg)i, Prji) (9)
and the likelihood of the last observation is
p(¥klOoiks yi:k—1) =N (Akmkm,DZ + AkPk|kA;c) . (10)
Now, since
P(Xt, 0o:¢|y1:t) = p(Xe|0o:t, y1:4)P(0o:t|y1:t),

the problem reduces to one of obtaining simulated values
from p(fo.t|y1:+) in order to produce a random sample to
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be used for Monte Carlo inference®. This is in general dif-
ficult, and an importance sampling technique can be em-
ployed. Given a probability distribution 7(6o.¢|y1:+) which is
easy to simulate from, we produce a set of M random vectors
0o.+ from it and assign to each one a weight

p(fo:t|y1:¢)
t(00:) o¢ ————=
wo:t (6o:t) 7(Qo:t|y1:¢)

to be used in Monte Carlo inference.

4.1 Particle Filters

In the above framework the data are processed in batches
and, as new observations arrive, it is necessary to produce a
new sample from the importance distribution (with increas-
ingly large sample size) and reassign the importance weights.
In many practical situations, however, ranging from the sig-
nal processing to the financial field, data are available on a
sequential basis, and having to re-run the whole estimation
as new data arrives is often not feasible when new observa-
tions arrive at a high rate.

Particle filtering methods have been recently rediscove-
red in independent work by [11] and [13]. The idea underly-
ing this approach is to represent the distribution of interest
by a large number of particles evolving over time on the
basis of a simulation-based updating scheme, so that new
observations are incorporated in the filter as they become
available.

More formally, the objective is to update, at each time
interval, p(0o.¢|y1:¢+) without modifying the past values of 6.
The importance distribution should thus be such that

7T(90:t ‘Y1:t) = 7T(‘90:z—1 |Y1:t—1)ﬂ'(9t|‘90:z—1, Y1:t),
and the weights factorise as w(6o.:) = w(fo.t—1)w: where

P(ytl0o:t, y1:0-1)p(0¢|0:—1)
W(0t|90:t717 ym)

Wt X

The weights can then be updated recursively, since w(fo.+) =
w(e():tfl)wt-

It was shown in [4] that the optimal importance distri-
bution, that is the one that minimizes the variance of the
importance weights, is p(6¢|60:t—1,y:). Unfortunately, this is
not easy to simulate from. A simple alternative, as employed
in [11, 13], is to use

W(9t|00:t71,y1:t) = p(9t|0t71), wr X p(yt|90:t7y1:t71)

i.e. the importance weights are then simply proportional to
the marginal likelihood. The weights are then normalized
according to

e v (9(()2)

a (o) = — )

ijvil w (eéjt) >

where 9((;% denotes the i-th particle. This is basically the
approach employed in the seminal paper by [11], plus the

resampling step which we will discuss in the following para-
graph.

3This is an example of the Rao — Blackwellized procedure, see

(4].

4.2 Resampling

It turns out that an algorithm of this kind will eventually
degenerate, i.e. assign almost all the weight to a single par-
ticle. In order to overcome this problem, a resampling step is
necessary. In the resampling step, particles with low impor-
tance weights are discarded and those with high importance
are multiplied. More formally, after producing a set of par-
ticles from the importance distribution and having assigned
to each one an appropriate weight, we associate to each par-
ticle 4 a number of offsprings M; such that M, M; = M.
After this selection step, offspring particles replace the orig-
inal particles and the importance weights are reset to 1/M,
so that the set of particles can be thought of as a random
sample. The resampling step can be implemented at every
time interval [11], or it can be employed whenever the set of
particles crosses a certain degeneracy threshold. A measure
of degeneracy of the algorithm is the effective sample size
[15], defined as

M
M= ——F"——.
1+ Var(wy)
This quantity can be estimated by
~ 1
M= ———+;
M ~2(3i)’
Zi:l wt< )

when M, drops below a certain threshold, the resampling
takes place.

Several different sampling schemes have been proposed in
the literature. In the following, we will denote with 9,22) the
i-th particle, as sampled from the importance distribution,
at time ¢, and with uiil) its associated normalized importance
weight. In our work, we have employed Systematic sampling,
which has smaller variance with respect to other schemes
[24]. The number of offsprings is taken to be proportional
to the importance weight and is generated by simulating a
set U of M uniformly distributed random variables on [0, 1],
taking the cumulated sum of the normalized weights

qi = Z ng)a
=1

and then setting M; equal to the number of points in U that
fall between ¢;—1 and ¢;. In this case the variance is

Var(M;) = M, (1 - Mw;(“) .

To wrap up, what the algorithm practically implements
at each time interval is the following:

1. Sample M particles GI from the importance distribution
m(0¢]60:t—1,y1:¢) and set 6}, = (92,90:z71)-
2. Evaluate the importance weights according to

p(yel0d., y1:-1)p(0][6:-1)
W(QI |90:t71, yl:t)

Wt X

3. Normalize the importance weights:

~(9(i)) v <0(()12)

Woit) = —— 7

S w (08)

4. Resample if M. below threshold by multiplying or dis-
carding particles according to their weight to produce a

new set of M particles 0o+, each with weight @w(6o.+) =
1/M.
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An issue which is closely related to degeneracy is that of the
depletion of samples. When performing the resampling step,
particles with high importance weight tend to be sampled a
large number of times and it could happen that the initial
set of particles ends up in collapsing into a single particle.
A method to overcome this problem [14] is to sample from
a kernel smoothed estimate of the target density, computed
on the basis of the current set of particles. However, the
drawback of this approach is that, besides raising problems
concerning the choice of a specific kernel and bandwidth,
it increases the Monte Carlo variance. We will examine in
what follows two situations in which the depletion of samples
should be seriously taken into account.

4.3 Fixed-lag smoothing

In some cases, in order to obtain a smoother estimate of the
state, it is useful to consider the distribution at time t after
a certain number of time intervals L. In more formal terms,
instead of considering p(X¢|y1:¢), we focus on p(X¢|y1:4+1). It
is hoped that expanding the information set by the use of an
appropriately chosen lag window L improves the estimates
of the states. In principle, fixed-lag smoothed densities can
be straightforwardly obtained by the general algorithm pro-
posed above, by simply extracting signal estimates at time
t — L+ 1 from the particles. However, it turns out that such
a scheme, where states at time t — L + 1 could have been
resampled up to L times, leads to serious degeneracy as L
grows larger.

In order to overcome this degeneracy problem, an MCMC
approach similar to [24] can be adopted. Let us consider
that, at time t + L, the particles are distributed accord-
ing to p(Oo:t+r|y1:t+L); the idea is to apply to each particle
a Markov transition kernel K™ with invariance distribution
p(00:t+L,¥1:¢4+1) in order to introduce diversity among the
particles.

If we denote with 0(')(:?+L the i-th particle after the resam-
pling stage, the MCMC proceeds by sampling each particle
and state 9,?) according to target density p(0k|9(f;€,y1:t+L),
where

[3 (7 [3 i 1(% 1(1
9(*1)“ - <90<1t)*1’9§ . ’el(clpek(qt)l» .- '79t(+)L> )

and k =t,t+1,...,t+ L. A Metropolis-within Gibbs sam-
pling MCMC scheme is used to achieve this and full details,
including the forward-backward Kalman filter for efficient
implementation, may be found in[24].

4.4 Static parameters

The degeneracy problem is however much more severe when-
ever the particle filter has to deal with the estimation of
static parameters. The prior p(f:+1|6:) would have proba-
bility mass 1 at 6;, so the particles are never updated and
rejuvenated and they eventually collapse on a few — and
sometimes even one — single value. In our specific case, we
have up to now assumed the stable law tail parameter «
to be known. This is rarely the case in practical applica-
tions. Furthermore, whereas in static estimation problems
one could somehow pre-estimate static parameters, in our
sequential estimation case this is obviously impossible. Fix-
ing the static parameters to arbitrarily chosen guesses is in
general very bad practice. In our specific case, however, a
few experiments, not reported here for sake of brevity, have
reported that, even if the guessed « is not very close to the
actual one, the results are still satisfactory and the improve-
ment in the SNR remains at the same order of magnitude.
However, it would surely be preferable to estimate « together
with the other parameters as the data are processed.
Several approaches to this problem are available. The
MCMC schemes above for fixed lag smoothing can be

adapted to the static parameter case, for example, although
in our case this led to a filter of ever growing computational
complexity and so was not adopted. Another approach to
overcome the degeneracy problem is to introduce artificial
parameter evolution, that is, simply pretending that static
parameters are indeed time-varying by adding a noise term at
each time interval. The problem is that in doing so we intro-
duce additional variability by “throwing away” information.
[14] propose a method for quantifying this loss of informa-
tion and devise an artificial parameter evolution scheme im-
mune to this problem. To focus the attention on our specific
case, we note that the static parameter is the stability index
a. Introducing artificial parameter evolution is equivalent to
consider a model in which « is replaced by its time-varying
analog a: which evolves according to
o = a1 + (e, Ce ~ N(0,wy).

In a situation in which « is fixed, the posterior distribution
p(aly1:¢) could be characterized by its Monte Carlo mean
and variance o and 5? It is immediate to observe that, in
the case of artificial parameter evolution, the Monte Carlo
variance increases to s; + w;. The Monte Carlo approxi-
mation can be expressed as kernel smoothed density of the
particles as

M
plalyre) & Y w?N (e la” @) -

j=1
Now the target variance s? can be expressed as

Sf = 5?71 + wi + QCOV(at_h Ct)y

so if we choose Wy
Cov(ai—1,(t) = -5

we have managed to avoid the loss of information. A simple
particular case in which this can be achieved is to consider

wt:s%<%fl>,

where ¢ is a discount factor in (0, 1]; the authors suggest its
value to be chosen around 0.95-0.99. If we define d = %,
the conditional density evolution becomes

plawsi|a) ~ N (g ldoy + (1 — d)a, hs?) (11)

2
h2:1—d2:1—(35’1) ,

where

26

so that sampling from (11) is equivalent to sampling from a
kernel smoothed density in which the smoothing parameter
h is controlled via the discount factor 4.

5. EXPERIMENTS AND RESULTS

In this section we will show how the sequential Monte Carlo
method outlined above performs on both simulated and real
audio data. As a benchmark of model performance, we will
use the signal to noise ratio, defined as

23:1 af
?:1(5“ - Zt)27

SNR = 10log;,
where x; is the clean signal and z; represents, in turn, the
observed noisy signal and the filtered state. We will start by
considering the simplest case, that is the one in which « is
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Signal sequence
T T T

I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200
t

Observed sequence

I I I I I
20 40 60 80 100 120 140 160 180 200
t

Figure 2: Clean and noisy signal, synthetic data.

known a priori and we do not perform fixed-lag smoothing,
so that there is no need for the MCMC step outlined in the
above subsection. The importance function was taken to
be the prior p(6:|0:—1); as a resampling scheme, we will use
systematic sampling, applied at each time step.

We have generated a synthetic signal of 200 observations
with parameters Aa, = 2I, Ay = 0.0005I, 62, = 0.2, §2 =
0.005, 57270 = 0.5, 5?, = 0.00005; the signal was then corrupted
with symmetric a-stable noise with o = 1.4. The SNR of
the noisy observations was 0.83dB. The synthetic data are
depicted in figure 2.

Using a simple Gaussian model, as the one proposed by
[24], obviously leads to poor results. Especially when the
signal is highly corrupted by the noise peaks, the filtered
states are very near to the observations, according to the
low likelihood of such extreme values under the Gaussian
noise assumption. Furthermore the extreme observations are
somehow “absorbed” by jumps in the variance of the signal.
The overall improvement in SNR was of 0.86dB, with RMSE
1.6947.

On the other hand, the use of the stable model greatly re-
duces the influence of the extreme noise observations, achiev-
ing a SNR improvement of 5.12dB with RMSE 1.0382; in
particular, we note that the filter is not misled by extreme
observations as it happened in the Gaussian case. Similar
results hold when « is estimated along with the other pa-
rameters. The prior we used for o was a simple uniform
distribution on [0.2,2]*, and we fixed the discount factor §
in (11) to 0.95. The evolution of the stability index is de-
picted in the top graph of figure 4 along with the 95% quan-
tile bands. The SNR improvement is 5.13dB with RMSE
1.0372, nearly identical to the case analyzed earlier in which
we fixed a to its true value. The evolution of the kernel
smoothed posterior distribution of « in for the last intervals
is presented in figure 5.

In order to get insights about the appropriate number
of particles to be used, we have performed a Monte Carlo
experiment consisting of 50 independent replications. All
experiments were performed on a laptop computer with a
2.66GHz Intel® Pentium® IV processor with 512Mb RAM.
The results, reported in Table 2 seem to indicate that us-
ing more than 300 particles does not lead to a significantly

4Values of o smaller than 0.2 were ruled out in order to avoid
overflows.
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Figure 3: Filtered signal (solid line) with 95% quantile bands
(dotted lines), stable noise, a = 1.4.
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Figure 4: Estimated parameters of the model, stable noise.

improved performance despite the increase in computational
effort. A number of particles between 100 and 300 seems to
be a good compromise between speed and accuracy.

Table 2: RMSE and mean and standard deviation (in paren-
theses) of SNR improvement, over 50 independent replica-
tions, for different number of particles M. The last row re-
ports the average time (in seconds) required to process one
observation.

M 10 50 100 300 500
RMSE 1.3688 0.9921 0.9893 0.9892 0.9892
SNR 2.8651  4.8815  5.1515 54857  5.4786
(1.6433)  (0.7991)  (0.5344)  (0.2708)  (0.2222)
Time 0.0219 0.0897 0.1432 0.3810 0.6407

Concerning the fixed-lag smoothing, we have performed
a simulation experiment consisting of 50 independent repli-
cations over 100 particles for different lengths of the lag win-
dow. Results are reported in Table 3 and suggest that an
optimal lag window could be between 5 and 10. The last
simulation experiment we have performed consisted in arti-
ficially corrupting with symmetric a-stable noise a clean au-
dio source; we have used the first 6.75 seconds of the Boards
of Canada’s “Music is Math” from the album “Geogaddi”,
ripped in PCM format (44.1KHz, 16 bit, mono) from the
original CD. This audio source was produced on computer,
so it presents no kind of corruption or background noise.
The parameters of the artificial noise were set to o = 1.7,
6 = 0, and the scale parameter v was evolved from its ini-
tial value 0.01 according to a Markov process as in (8), with
6 = 0.01. The resulting SNR is 3.9564. For illustration
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Figure 5: Kernel smoothed posterior densities of « in for
t =150, ...,200.

Table 3: RMSE and mean and standard deviation (in paren-
theses) of SNR improvement, over 50 independent replica-
tions, for different length of the lag window L with 100 par-
ticles. The last row reports the average time (in seconds)
required to process one observation.

L=0 L=5 L=10 L=20
RMSE 0.9892 1.0151 0.8893 0.9561
SNR 5.1515 6.1061 6.1907 5.8457
(0.5344)  (0.4889)  (0.5483)  (0.6312)
Time 0.1432  1.0734  1.9126  3.5102

purposes, the filter was first run on an excerpt of 1000 ob-
servations (200001 to 201000 out of 261072, input SNR 8.72),
clean, noisy and filtered signal for this excerpt are displayed
in figure 6. We have employed 200 particles, with a fixed-lag
smoothing window of length 5; the filter performed remark-
ably well, achieving a SNR improvement of 8.5308.

The same filter was then applied to the whole series,
yielding again a remarkable SNR improvement. The recon-
structed audio source was then recoded in audio format, and
informal listening tests confirmed the reduction of the noise.
In particular, the filter performed very well in removing the
peaks but left a small amount background noise®, sounding
like a feeble “hiss”.

A very sensitive issue we had to deal with was that of
the choice of the prior for the scale parameters o and . Pre-
liminary experiments pointed out how values very far from
their true counterparts can lead to very poor performance,
mainly owing to the trade-off effect between the scale and
the tail-thickness parameter and the slow evolution speed of
the scale parameter. For example, a too small value of v can
lead « to decrease to compensate the effect. In the present
case, we have bypassed the problem by using a strongly in-
formative normal prior centered on the true value of v, which
was obviously known a priori. The issue deserves however
further attention, especially because when we are interested
to process the observations on-line, unless we decide to dis-
card the very first observations as if it was a sort of burn-in
period, it is not even possible to pre-estimate the scale pa-
rameter in order to get insights on an appropriate prior from
which to sample the initial particles. It would certainly be
preferable to specify an appropriate joint prior that takes

5All audio examples presented in this paper can be downloaded
at the URL http://www.ds.unifi.it/mjl/sound.htm.

100 200 300 400 500 600 700 800 900 ; 1000

L L L L L L L L L
100 200 300 400 500 600 700 800 900 . 1000

100 200 300 400 500 600 700 800 900 P 1000

Figure 6: Excerpt of clean, noisy and reconstructed signal
for Boards of Canada’s “Music is Math”.

into account the dependence structure between the two pa-
rameters. This issue however deserves further attention and
will be the subject of future research.

We are now in position to consider an application of the
above methodology to genuine corrupted audio data from
the Lachmann database. As we have anticipated, the audio
source we will refer to if a set of recordings of songs taken
in Palestine in the early twentieth century; this audio source
is extremely noisy and corrupted; as we have pointed out
in section 2, the noise of this audio source is modelled very
well by an a-stable distribution. We have applied the parti-
cle filter, with M = 100 and L = 100 to a short an excerpt
of two seconds of one of the audio tracks. Given the large
number of lags involved, we have decided not to perform
the MCMC step in order to reduce the computational time.
The results were encouraging: the peaks in the corrupted au-
dio signal were removed, leaving behind a “seemingly white”
background noise that could be dealt with by traditional fil-
tering methods. The final estimated value for o was 1.5509.

6. CONCLUSIONS

We have proposed and tested methods for performing on-
line Bayesian filtering in TVAR models with symmetric a-
stable noise distribution. Using such a of distribution allows
for more flexibility and permits successful modelling of the
heavy-tailed noise which is often observed in empirical audio
time series [8]. The performance of this filtering method was
assessed on both simulated and real data, and the analysis
of a genuinely degraded audio source suggested that a-stable
distributions are particularly well suited to model this kind
of noise.

The reason for which we considered only symmetric cases
of a-stable distributions instead of the more general asym-
metric version is that they can be represented exactly as a
scale mixtures of normals. This useful property, that allows
us to use the Kalman filter by expressing the model in con-
ditionally Gaussian form, does not hold for the more general
asymmetric case. In the general case, one should resort to
more standard techniques to obtain the likelihood of every
particle, but the necessity to perform the inversion of the
characteristic function via the FFT at each time interval and,
within a given time interval, for each particle, would lead to
excessive computational requirements, at least according to
the power of the machines available to us. In fact we believe
from observation that the a-stable distributions involved in
audio noise are very close to symmetric, so we do not regard
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this restriction as a serious limit to the methods in practice.

Although we have focused our analysis on symmetric a-
stable distributions, this approach has much more generality
and can routinely be extended to other situations in which
the distribution of the noise can be represented as a scale
mixture of normals; it is in fact sufficient to modify the dis-
tribution of the scaling factor A. Distributions that can be
expressed as scale mixtures of normals include the logistic,
Student’s ¢ and power exponential [25]. In particular, the
Student’s t and the power exponential distribution are espe-
cially appreciated in the setting of noise modelling and we
will present here for reference the densities that should be
employed for the scale factor .

If the noise has t distribution with v degrees of freedom,
scale parameter o and location parameter p

€ ~t(v,p,0),

the scaling factor has inverse gamma distribution with shape

parameter v — £ and scale parameter 2 [1]:

2

ei:5+’y\/)\iui, )\iNIg(ll—%,Q), u,-NN(O,l).
The (standardized) power exponential distribution, some-
times referred to as generalized error distribution (GED),
has probability density function

f(z) < exp (|z|~%),

with a € [1,2]; the case a = 2 obviously corresponds to a
Gaussian distribution, and @ = 1 to a Laplace, or double
exponential, distribution. If ¢; has power exponential distri-
bution with parameters «, pu and o, the scaling factor can be
shown [25] to have density

p(Ai) o A%s (A% ,1),

where s(-;a, ) denotes the probability density function of
a standard stable distribution with tail parameter o and
asymmetry parameter 3. Although this density cannot be
expressed in closed form, simulated values can be readily
obtained using the approach of [3].

In general, ¢ distributions and power exponentials are
far more popular than the a-stable for heavy tailed mod-
elling purposes; in our opinion this is mainly because of their
simplicity. However, as we have observed in section 2, the
a-stable distribution fits our data much better than the Stu-
dent’s t. Moreover, in our framework the a-stable and GED
models will involve approximately the same computational
burden as that for the (apparently simpler) Student’s ¢ case,
since the generation of stable law random numbers takes
roughly the same magnitude of computation as that needed
to produce inverse gamma distributed random numbers.

To conclude, we have presented practical Monte Carlo
methods for on-line estimation of TVAR models in the pres-
ence of a-stable noise. The methods are accurately able to
infer the signal state as well as unknown parameters, includ-
ing the challenging a parameter of the stable distribution.
Results so far are promising for some of the most demanding
degraded audio sources obtained from early ethnomusicolog-
ical archives.
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