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ABSTRACT

Full-duplex hands-free acoustic human/machine interfaces
often require the combination of acoustic echo cancella-
tion and speech enhancement in order to suppress acous-
tic echoes, local interference, and noise. In order to opti-
mally exploit positive synergies between acoustic echo can-
cellation and speech enhancement, we present in this contri-
bution a combined least-squares (LS) optimization criterion
for the integration of acoustic echo cancellation and adaptive
linearly-constrained minimum variance (LCMV) beamform-
ing. Based on this optimization criterion, we derive a compu-
tationally efficient system based on the generalized sidelobe
canceller (GSC), which effectively deals with scenarioes with
time-varying acoustic echo paths and simultaneous presence
of double-talk of acoustic echoes, local interference, and de-
sired speakers.

1. INTRODUCTION

For audio signal acquisition in hands-free human/machine
interfaces, adaptive beamforming microphone arrays can be
efficiently used for enhancing a desired signal while suppress-
ing interference and noise [1]. For full-duplex communication
systems, not only local interferers and noise corrupt the de-
sired signal, but also acoustic echoes of loudspeakers. For
suppressing acoustic echoes, acoustic echo cancellers (AECs)
[2] are the optimum choice since they exploit the available
loudspeaker signals as reference information.

For optimally suppressing local interferers and acoustic
echos, it is thus desirable to combine acoustic echo cancella-
tion with beamforming in the acoustic human/machine in-
terface. For optimum performance, synergies between the
AECs and the beamformer should be maximally exploited
while the computational complexity should be kept moder-
ate. This problem may be illustrated with two fundamental
concepts for combining adaptive beamforming and AECs as
shown in Figure 1 [3].
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Figure 1: Combinations of AEC and beamforming [3].

The AECs A(k) can be placed in the sensor channels
("AEC first’), so that the problem of acoustic echo cancella-
tion corresponds to that of the AEC alone.! For the adaptive

1Upper case bold font and lower case bold font denote matrix

beamformer w(k), however, positive synergies can be ex-
ploited after convergence of the AECs: The acoustic echoes
are efficiently suppressed by the AECs, and the adaptive
beamformer w(k) does not depend on the echo signals. Thus,
more degrees of freedom are available for the suppression of
local interference and noise. Obviously, one AEC is necessary
for each sensor channel so that the M-fold complexity, where
M is the number of microphones, is required at least for the
filtering and for the filter update compared to a single AEC.
Even with moderate numbers of microphones (4 < M < 8),
this is a limiting factor for the usage of ’AEC first’ in cost-
sensitive systems [3]. Moreover, for presence of strong local
interference and noise, the adaptation of the AECs must be
slowed down or even stopped in order to avoid instabilities
of the adaptive filters A (k). This reduces the tracking capa-
bility and, consequently, the echo suppression of the AECs
for frequently changing echo paths, e.g., for the case, where
a frequently moving desired source is located nearby the mi-
crophones. Limited echo suppression of the AECs, however,
limits the positive synergies for the adaptive beamformer.

Alternatively, the AEC can be placed after the adaptive
beamformer ("beamformer first’). Obviously, the complexity
is reduced to that of a single AEC. However, positive syner-
gies cannot be exploited for the adaptive beamformer, since
the beamformer always ’sees’ local interference and acoustic
echoes. Furthermore, the AEC a(k) generally cannot track
the time-variance of w(k) due to the smaller number of fil-
ter taps of w(k), which leads to faster convergence of w(k)
relative to the AEC [3].

Another solution would be the integration of acoustic
echo cancellation and adaptive beamforming so that the
AEC does not depend on the time-variance of the adaptive
beamformer [3]. One possible solution, which is based on
the structure of the generalized sidelobe canceller (GSC) [4]
is proposed in [5]. For this GSAEC, the AEC is placed in
the reference path behind the quiescent beamformer so that
the AEC is independent of the time-varying sidelobe can-
celling path. However, acoustic echoes may leak through the
sidelobe cancelling path when acoustic echoes are efficiently
suppressed by the AEC so that the synergies of "AEC first’
cannot be obtained. Moreover, analogously to "AEC first’,
the performance of this integrated system for strong local
interference and noise and for continuously changing echo
paths is limited.

As a new original contribution, we present in this work
the combined optimization of adaptive beamforming and
acoustic echo cancellation, which especially addresses the
presence of strong local interference and noise, and fre-
quently changing echo paths. In Section 2, the optimization
criterion is presented. Section 3 derives a computationally
efficient realization of the combined system which is based
on the GSC structure. Section 4 describes an exemplary

quantities and vector quantities, respectively. k represents the
discrete time index.
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realization and illustrates the performance by experimental
results for stationary conditions and for transient conditions.

2. OPTIMIZATION CRITERION

In contrast to 'beamformer first’ in Figure 1, where different
siggals are used for the optimization of w(k) and of the AEC
a(k), we propose to use the output signal y(k) for the opti-
na' ation of both AEC and adaptive beamformer as shown

igure 2. The reference loudspeaker signals v(k) can thus
be interpreted as additional input signals for the adaptive
beamformer.?
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Figure 2: Joint optimization of adaptive beamforming and
acoustic echo cancellation.

We now formulate the joint optimization criterion for the
adaptive beamformer and for the AEC. We assume that the
sensor signals x(k) are given by the superposition of the de-
sired signal d(k), local interference n(k), and acoustic echoes
e(k),

x(k) = d(k) + n(k) + e(k), (1)

where d(k), n(k), and e(k) are zero-mean and mutually un-
correlated. The output signal y(k) of the combined system
can be written as a function of the sensor signals x(k), the
loudspeaker signals v(k), the stacked beamformer weight
vector w(k), and the stacked AEC weight vector a(k) as

y(k) = w' (k)x(k) +a” (k)v(k), (2)
where

x(k) = (xo(k), x1(k), -, xar—1 (k)" 3)
Xm(k) = (@m(k), zm(k—1), ..., Zm(k — Nw 4+ 1))",(4)
v(k) = (vo(k), vi(k), ..., va-1(k)" , (5)
ve(k) = (vg(k), vg(k —1), ..., Uq(k_Na+1))T , (6)
w(k) = (wo(k), wi(k), ..., war—1 (k)" , (7)

Wi (k) = (wo,m(k), wim(k), ..., wny—1,m (k)" (8)
a(k) = (ao(k), ai(k), ... , ag-1(k))" )
ag(k) = (aoq(k), arg(k), ., ana-1,4(k)" . (10)

Q is the number of loudspeaker channels, and Ny and N,
are the number of filter coefficients of the beamformer weight
vectors wq, (k) and of the AEC filters aq(k), respectively.
With stacked vectors

(k) = (W' (), a7 (8)) (1)
x(k) = (x"(0), v (0)) (12)
we can write y(k) as

y(k) = w" (k)X (k). (13)

2This idea was first used in [6] for a combination of acous-
tic echo cancellation and multi-channel noise-reduction based on
generalized singular value decomposition (GSVD).

A LS optimization criterion is obtained by minimizing the
windowed sum of squared output signal samples y(k) subject
to constraints which assure that the desired signal is not
distorted by w(k). That is,

k

gl(i)?) ‘ w;i(k)y*(i) subject to CT(k)w(k) = c(k). (14)

The windowing function w; (k) extracts desired samples from
the output signal y(k) which should be included into the op-
timization. For example, infinite memory with exponential
averaging is obtained with w;(k) = A*~* [7]. The constraint
matrix C(k) of size (M Nw + QNa) x C and the constraint
column vector c(k) of length C' put C spatial constraints
onto w(k) in order to assure unity beamformer response for
the direction-of-arrival of the desired signal [8]. Since the
Q loudspeaker signals v(k) are assumed to be uncorrelated
with the desired signal, the constraints are only required
for the microphone signals, just as for conventional LCMV
beamformers [8]. We can thus write C(k) as

C(k) = (7 (), OCXQNB)T , (15)

where C(k) of size M Ny, X C'is a conventional constraint ma-
trix known from LCMV beamforming [8]. We thus obtain
with (14) a formally simple optimization criterion, where
only one single error signal needs to be minimized for an ar-
bitrary number of microphones. This combined optimization
allows to update the beamformer and the AEC simultane-
ously — in contrast to the previously discussed combinations,
where the AEC can only be updated if local interference and
desired signal are not active. As a consequence, the tracking
problems of ’AEC first’ and the leakage problem of GSAEC
are thus resolved. The number of spatial degrees of free-
dom for interference suppression and for echo cancellation
are increased by the number of loudspeakers @ relative to a
beamformer alone.

3. TRANSFORMATION TO THE GSC

A direct solution of (14) can be determined using Lagrange
multipliers [8]. However, with regard to an efficient realiza-
tion of this combined system, we transform the constrained
optimization problem into an unconstrained one using the
structure of the GSC [4, 9].
For obtaining the GSC, the stacked weight vector w(k)
is projected onto two orthogonal subspaces,
w(k) = (Pc(k) + Pa(k)) w(k) . (16)

The first subspace wq(k) := Pc(k)w(k) (constrained sub-
space) fulfills the constraint equation. That is,

CT (k)We(k) = c(k). (17)
From (15), it follows that w¢(k) can be chosen as

We(k) = (W (), O1xan, ) (18)

in order to fulfill (17). The weight vector wc(k) of size
M Ny, x 1 is known as quiescent weight vector [8].
The second (orthogonal) subspace is chosen as

P.(k)w(k) := —B(k)Wa(k), (19)

where the columns of the matrix B(k) are orthogonal to the
columns of the constraint matrix C(k), i.e.,

CT(k)B(k)=0. (20)
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The cascade of B(k) and wa (k) is termed sidelobe cancelling
path [4]. From (15), it may be seen that (20) is met for

OM N xQNa
IoNax@Na > ’ (1)

o B(k)

B(k) = ( 0QNax (M—C) Ny,
where Ign, xQn,. is the identity matrix of size QNa X QNa
and where B(k) meets CT(k)B(k) = 0. Since the con-
strained subspace generally contains the desired signal, the
matrix B(k), which fulfills the requirement that the second
subspace is orthogonal to the constrained subspace, sup-
presses desired signal components. Therefore, the matrix
B(k) is generally referred to as blocking matrix [8]. The iden-
tity matrix assures that acoustic echoes are not cancelled by
B(k). As a consequence, ideally, only acoustic echoes, local

interference, and noise are present at the output of E(k), SO
that the weight vector wa(k) can be determined by uncon-
strained LS minimization of y(k),

min y w; (k) {(\TVC(k)—]~3(k)v~va(k)>T>~<(i)r. (22)
1=0

Introducing (18) and (21) into (22) and identifying the result
with (2), it may be seen that w. (k) is equivalent to a stacked
weight vector consisting of a weight vector w, (k) and of the
AEC a(k),

Wa(k) := (wq (k), a” (k)" . (23)
We obtain for the output signal y(k) the expression
y(k) = (we(k) = B(k)wa (k)" x(k) —a’ (k)v(k),  (24)

which can be put into the structure that is depicted in Fig-
ure 3. The combined system thus corresponds to the GSC,
where w, (k) is combined with the AEC a(k), and where the
loudspeaker signals v(k) are used as additional channels of
the sidelobe cancelling path. wa(k) is generally called inter-
ference canceller since w, (k) is optimized in order to cancel
interference and noise at the output of the GSC. Analogously,
we refere to wa (k) as ’echo and interference canceller’ (EIC)
and to the combined system of AEC and GSC as generalized
echo and interference canceller’ (GEIC).

The optimum weight vector w,(k) is now obtained by
setting the derivative of (22) w.r.t. wa(k) equal to zero and
by solving the obtained system of linear equations for wa(k):

Faom (k) = (BT ()B(R)B(K)) BT () B(k)e(k) , (25)
k
(k) = > wi(WR(E () = (gjigg ijzgg).(%)

P (k) is the sample correlation matrix of the stacked data
vector x(k) [7] for a given windowing function w;(k) and
()1 is the pseudoinverse of a given matrix. The solution of
the optimum weight vector Wa opt (k) is formally equivalent
to the optimum weight vector of the GSC [9]. Introducing
finally (18), (21), and (26) into (25), (25) can be written as

(wa,op«k)) _ (BT<k><1>xx<k>B<k> BT(k)@xmk))*X
agi(k) ) =\ @u(WB(k) B ()

B (k) ®scx (k) we (k)
X( B (bywe(k) ) (27)

Note that the combined optimization of a(k) and wa (k) in-
troduces the off-diagonal matrices into the first correlation
matrix on the right side of (27). Separate optimization of
a(k) and wa (k) (with the off-diagonal matrices equal to zero)
yields the GSAEC with the AEC behind w(k) [3, 5].
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4. REALIZATION EXAMPLE

For realizing the GEIC for practical applications, we use the
implementation of the GSC in the discrete Fourier trans-
form (DFT) domain after [10]. This implementation uses an
adaptive blocking matrix [11] for tracking movements of the
desired source and for robustness against distortion of the
desired signal in reverberant environments. Blocking matrix
and EIC are realized using DFT-domain adaptive filtering.
The blocking matrix is adapted for presence of only desired
signal, the EIC is adapted for presence of local interference
and/or acoustic echoes. For controling the adaptation, the
time-frequency double-talk detector presented in [12] is used.
A separate adaptation control for the AEC as for ’AEC first’
is thus not required.

For the realization of the EIC by adaptive filters, three
aspects should be considered: First, the AEC a(k) and
the interference canceller w,(k) should have the same fil-
ter length Na = Ny, in order to assure the same conver-
gence speed, although generally Na > Ny, [3]. Therefore,
a(k) should not be viewed as a conventional AEC but as
additional degrees of freedom for the interference canceller.
As a result, the echo suppression of GEIC will be smaller
than the echo suppression of ’AEC first’ for stationary con-
ditions especially for reverberant environments, where gen-
erally Na > Ny, . For environments with low reverberation,
as, e.g., car environments, where Ny =~ N, the perfor-
mance of GEIC for stationary conditions approaches that
of "AEC first’. Second, the level of the loudspeaker signals
v(k) should be adjusted to the level of the output signals of
the blocking matrix in order to avoid large level differences
which may lead to instabilities of the adaptive filters. Third,
the loudspeaker signals should be temporally synchronized
with the output signals of the blocking matrix in order to
maximize the effective filter length of a(k).

4.1 Stationary conditions

We now compare the GEIC with ’AEC first’ and with the
GSC for stationary conditions. We use a sensor array with
M = 4 and with an aperture of 28 cm in an office room with
Tso = 250 ms reverberation time. The desired speaker is
located in broadside direction at a distance of 60 cm from the
array center. Two loudspeakers are placed in the two endfire
directions at the same distance. A local interferer is located
at 60 degrees off the array axis at 1.2 m. All source signals are
highpass-filtered mutually uncorrelated white noise signals
(cut-off frequency 200 Hz). The sampling rate is 12 kHz,
Ny, = 256, Na = Ny, for GEIC, Ny = 1024 for 'AEC first’.

In Figure 4, the interference suppression /R and the echo
suppression FRLE are depicted as a function of the echo-to-
interference ratio EIR at the sensors. The echo suppression
of the AEC for ’AEC first’ is ERLE arc = 20 dB. As we
expected, IR and ERLE for the GEIC is greater than for the
GSC but less than for "AEC first’. Especially for low FIR,
ERLE is considerably smaller for GEIC than for "AEC first’.
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However, for low EIR, acoustic echoes are masked by local
interference, and this performance improvement is obtained
by using longer AEC filters in each of the sensor channels.
With increasing EIR, where the echo suppression is more and
more important, FRLE of GEIC increases rapidly, so that
ERLE is less than 7 dB smaller for GEIC than for ’AEC
first’ (EIR > 0 dB) in this experiment.
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Figure 4: Interference rejection IR and echo suppression

ERLFE for GSC alone, ’AEC first’, and GEIC after conver-
gence of the adaptive filters.

4.2 Transient conditions

Next, we study the behavior of GEIC and of "AEC first’ for
transient echo paths. The results are depicted in Figure 5.
The geometrical setup corresponds to Section 4.1. Instead of
mutually uncorrelated white noise signals, we now use male
speech as desired signal and stereophonic (pop) music from
mp3-files as acoustic echo signals (Figures 5 (a)-(c)). At 12.5
s, the loudspeakers are moved symmetrically to 20 degrees
off the array axis in order to simulate a change of the echo
paths. Figure 5 (d) shows which modules are adapted at
a given time-instant. Figure 5 (e), (f) illustrate IR(k) and
ERLE (k) for GEIC and for "AEC first’, respectively. It may
be seen that ’AEC first’ outperforms GEIC during Phases II
and ITI, where the AECs for ’AEC first’ are converged. How-
ever, during Phases IV and V, where acoustic echoes, local
interference, and the desired speaker are active simultane-
ously, the GEIC outperforms ’AEC first’, since the AECs of
"AEC first’ cannot be adapted while the EIC can be adapted.
IR(k) and ERLE (k) of ’AEC first’ are reduced to that of the
GSC. During Phase VI, where again only acoustic echoes are
present, the AECs of ’AEC first’ reconverge.

5. CONCLUSIONS

We presented a joint optimization for acoustic echo cancel-
lation and adaptive LCMV beamforming, which leads to
an efficient combination of AECs and adaptive beamform-
ers. With a realization example based on a robust GSC, we
showed that this structure is especially efficient for transient
echo paths if frequent double-talk between acoustic echoes,
local interference, and desired speakers is to expected. Our
system requires only one AEC for an arbitrary number of mi-
crophones and no separate adaptation control for the AEC.
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