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ABSTRACT 
 
Image compression performance of new multiwavelets 
constructed using B-spline super functions is compared 
with existing multiwavelets. First orthogonal, 
approximation order preserving pre-filters are designed and 
then an extensive comparative performance analysis in 
image compression is carried out. Our results confirm the 
usefulness of the super function design criteria in image 
compression. The new multiwavelets show excellent 
performance, which is better than most of the well known 
multi-wavelets and at least as good as the 9/7 biorthogonal 
wavelet.  

 

1. INTRODUCTION 
 
Ever since their discovery, multi-wavelets have been the 
focus of a lot of research in signal processing and pure 
mathematics [1]-[5]. The interest in multiwavelets is mainly 
due to the fact that, unlike scalar wavelets, they can 
simultaneously possess orthogonality and symmetry. 
Furthermore, it is possible to combine high order of 
approximation and short support. 

Approximation order is an important feature for 
wavelet applications. Its characterization forms the basis 
for constructing new multiwavelets. Super function theory 
is an elegant way of characterizing approximation order 
[6]. In this work we briefly review the formulation of a 
simple criterion which ensures that a given refinable super 
function with desired approximation order (e.g. a basic 
spline) lies in the linear span of integer translates of the 
multiscaling functions. This ensures that the multiscaling 
functions inherit the approximation order of the super 
function. Using the derived condition, we then give the 
construction of a symmetric and a non-symmetric multi-
wavelet where the B-spline super function of order two lies 
in the linear span of integer translates of their multiscaling 
functions. Thus they both have approximation order three 
[7]. Quasi optimum orthogonal approximation order 
preserving pre-filters for both are designed using the 
method described in [8]. The pre-filters are designed so that 

the pre-filter - multifilter combination produce the lowest 
mean square error in one dimensional sinusoidal signal 
representation with a specific number of coefficients in the 
approximation. The performances of the new multiwavelets 
are compared with existing multiwavelets with their best 
pre-filters. Our results indicate that the new multiwavelets 
outperform almost all other multiwavelet transforms for 
almost all images considered. 
 

2. MULTIWAVELETS VIA B-SPLINE SUPER 
FUNCTIONS  

 
In this section, we review the derivation of a simple 
condition which ensures that a given refinable super 
function lies in the linear span of integer translates of the 
multiscaling functions. The condition is formulated as a 
generalized eigenvalue equation which provides a method 
for constructing the r scaling functions from a known 
refinable super function [7]. Requiring the compactly 
supported and refinable super function f(t) to lie in the 
finite linear span of integer translates of multiscaling 
functions ( )0 1 1     .  .  .   T

rφ φ φ −=Φ , we obtain 
 

( )( ) n
k n

n k

f t a t kφ= −∑∑  (1) 
 

where n
ka  are finite sequences in the linear combination. 

The refinability of the super function implies that it satisfies 
the dilation equation with a scalar scaling filter h  
 

( ) (2 )f t h f t= −∑  (2) 
 

Similarly, the multiscaling functions satisfy the vector 
dilation equation 
 

( ) ( )2k
k

t t k= −∑Φ Φc  (3) 

where ck is a finite sequence of real 2 x 2 matrices.  
Combining (1) and (2) gives 
 

( ) ( ){ }n n
k n k n

n k n k
a t - k h a 2t - k -φ φ= ⋅∑ ∑ ∑ ∑ ∑  (4) 
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 k ck dk 
0 0.01319014879908  -0.00103170465482 

0.01612422454349  -0.00126120165666 
-0.10107171197121   0.00790560874635 
-0.00042549290059   0.00003328112615 

1 0.00991343500792  -0.12674139081667 
0.01211862386845  -0.15493431314630 

-0.07596334681497   0.97117701570962 
-0.00031979140497   0.00408847260362 

2 0.68400319737956  -0.12570968616184 
0.68940144308205   0.01767955302216 

0.19933707925397  -0.01350431337959 
-0.02155673616222  -0.01916908817968 

3 0.68400319737956   0.12570968616184 
-0.68940144308205   0.01767955302216 

-0.02155673616222   0.01916908817968 
0.19933707925397   0.01350431337959 

4 0.00991343500792   0.12674139081667 
-0.01211862386845  -0.15493431314630 

-0.00031979140497  -0.00408847260360 
-0.07596334681497  -0.97117701570962 

M
W

s_
p3

 

5 0.01319014879908   0.00103170465482 
-0.01612422454349  -0.00126120165666 

-0.00042549290058  -0.00003328112615 
-0.10107171197121  -0.00790560874635 

0 -0.00000000000000  -0.21427906746710 
-0.00000000000000  -0.05080667958406 

0.00000000000000  -0.42387365634026 
-0.00000000000000   0.02883143939738 

1 0.76788573748733   -0.59294475226534 
0.14015502335727   0.03618641554837 

-0.61227829542638  -0.65942860917543 
-0.07953424815881  -0.02053482840116 

2 0.11336885008659   -0.00000000000000 
-0.85608441929855  0.43336471404075 

-0.10295786425264   -0.00000000000000 
0.48580513932648    0.76367405268378 

3 0.00000000000000  0.00000000000000 
-0.04809874213420  -0.22715838046850 

0.00000000000000   0.00000000000000 
-0.08475946505225  -0.40029784473211 

G
H

M
_p

3 

4 0.00000000000000  0.00000000000000 
-0.04319568165697  0.00000000000000 

0.00000000000000   0.00000000000000 
-0.07611930598095  0.00000000000000 

Table 1: Matrix filters coefficients of multiwavelets. 
 

Expanding the left hand side of (4) using the matrix 
dilation equation and matching terms of the same scale and 
shift on both sides results in  
 

f f=x xH B  (5) 

where 0 1 1[   ...  ]K −=x x x x  with 1 1[   ...  ]0

k k k k
a a a=x , Hf and 

Bf are finite portions of the infinite matrices H and B 
respectively,  
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(6) 

 

In (6), I is the 2 x 2 identity matrix and N and L denote the 
supports of the multiscaling function and refinable super 
function respectively. Equation (5) forms the starting point 
for the construction of multiscaling functions with 
approximation order. It has non-trivial solutions if the 
matrix ( )f f−H B  is not of full rank. Any vector x in the 

left null space of ( )f f−H B  can be used in the linear 

combination (1) to produce the super function f(t).  
Once the matrix filter coefficients of the multiscaling 

function are evaluated, the multi-wavelets, 

0 1 1(      .  .  .   )T
rψ ψ ψ −Ψ = , which satisfy the matrix 

dilation equation with matrix coefficients dk 
 

( ) ( )2
k

t t kkΨ = −∑ Φd  (7) 
 

can be constructed to be orthogonal to the multiscaling 
functions [2]. 

In [7], based on the super function formulation, two 
new multiwavelets with approximation order three were 
constructed. The first construction (GHM_p3) was defined 
by five 2x2 matrix filter coefficients and was non-
symmetric. The second construction (MWs_p3) was a 
symmetric multiwavelet system defined by six 2x2 matrix 
filter coefficients. The coefficients ck of multiscaling 
functions and dk of multiwavelets are listed in Table 1. 
Multiscaling and multiwavelet functions of the second 
construction (MWs_p3) is shown in Fig. 1. 
In application using multiwavelets, it is necessary to 
associate a given discrete signal with a function in the 
scaling function space V0 [9]. This association is equivalent 
to including a pre-filter and a post-filter for the filter bank 
determined by the underlying multiwavelets. Using the 
method described in [8] a set of quasi-optimum orthogonal 
approximation order preserving pre-filters are designed for 
the new multiwavelets. The pre-filters are optimum in the 
sense that they are designed using an exhaustive search 
algorithm to give minimum peak signal to noise ratio 
(PSNR) when approximating one dimensional sinusoidal 
waveforms with a specified  number of coefficients kept in 
the reconstruction. In Table 2 the coefficients of quasi-
optimum pre-filters for both multiwavelets are given. 
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Fig. 1: Multiscaling and multiwavelet functions of  

MWs_p3. 
 

Quasi-optimal pre-filters 

q(1) 0.05469185477583   0.98776815866677 
0.00807282833252   0.14580018925901 

G
H

M
_p

3 

q(0) 0.14580018925901  -0.00807282833252 
-0.98776815866677   0.05469185477583 

q(1) 0.00140124612474   0.00242930883535 
0.00501192331030   0.00868905852072 

q(0) 0.71439459358253   0.69966554904089 
0.69966554904089  -0.71439459358253 

M
W

s_
p3

 

q(-1) -0.00868905852072   0.00501192331030 
0.00242930883535   -0.00140124612474 

Table 2: Orthogonal pre-filters for MWs_p3 and GHM_p3 
multiwavelets. 

 
 

3. APPLICATION TO IMAGE COMPRRESSION  
 
In this section the performance of the new multiwavelets 
are compared with GHM [1], CL [5] and SA4 [4] 
multiwavelets. The best known pre-filters [4], [8] for these 
multiwavelets are employed in the comparison. Five 
iterations of the cascade algorithm are implemented. The 
same number of coefficients is retained by killing 
coefficients below a threshold defined by the compression 
ratio (CR) for all multiwavelet transforms and finally the 
cascade algorithm is inverted to reconstruct the original 
image. For symmetric multiwavelets, the boundaries are 
handled by symmetrically extending the data and for the 
non-symmetric GHM_p3 multiwavelet a periodic wrap of 
the data is applied. No coding is employed since we are 
interested in the energy compaction properties if newly 
constructed multiwavelets. The results of our simulations 
for six standard images are given in Table 3. We indicate 
with boldface numbers the wavelet that performs best in the 
peak signal to noise ratio sense (PSNR). It is observed that 
MWs_p3 outperforms almost all the other multi-wavelets 
for a big majority of images at almost all compression 
ratios considered. The situation is slightly different for 
Barbara and Baboon images. These images contain 

significantly higher frequencies. For Barbara image SA4 
[4] multiwavelet performs slightly better than MWs_p3 at 
all compression ratios considered. For Baboon image at 
low compression ratios SA4 again outperforms MWs_p3; 
however for compression ratios beyond 24:1 MWs_p3 
outperforms SA4. in most cases, the performance obtained 
by the new multiwavelet MWs_p3 is comparable to the 
popular Bi 9\7 scalar biorthogonal wavelet. For the Lena 
image Bi 9\7 outperforms slightly the MWs_p3 
multiwavelet. Also, for the Yogi image at low compression 
ratios Bi 9\7 is about 2 dB better than best multiwavelet 
studied in this work. Figure 2 displays the reconstructed 
Lena images with MWs_p3, GHM_p3, CL [5] and SA4 [4] 
multiwavelets together with Bi 9\7 wavelet at compression 
ratio 128:1. The best known pre-filters [4], [8] for SA4 [4] 
and CL [5] multiwavelets are also employed in the 
comparison.  
 
 

4. CONCLUSION 
 
Image compression performance of multiwavelets 
constructed to have a B-spline super function in the linear 
span of the integer translates of their multiscaling functions 
is evaluated. The usefulness of this property is 
demonstrated. It is shown that with the appropriate design 
of pre-filters, the new multiwavelets give excellent 
performance outperforming almost all the other multi-
wavelets both visually and in the peak signal to noise sense. 
The performance are comparable to those of the popular Bi 
9\7 biorthogonal scalar wavelet in most cases. 
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Original Image

(a)  

Compressed Image with MWs p3

(b)  

Compressed Image with GHM p3

(c)  
Compressed Image with SA4

(d)  

Compressed Image with CL

(e)  

Compressed Image with Bi 9\7

(f)  
Fig. 2: Original image is shown in (a).Reconstructed Lena image with MWs_p3, GHM_p3, SA4, CL  multiwavelets and Bi 9\7 wavelet 

are shown in (b), (c), (d), (e), and (f), respectively. 
 

PSNR (dB) 

 CR MW 
_p3 

GHM 
_p3 GHM CL SA4 Bi9\7 

8:1 35.68 35.05 35.09 35.23 35.55 35.47 
16:1 32.74 32.10 32.08 32.27 32.56 32.47 
32:1 30.43 29.83 29.78 29.98 30.23 30.12 
64:1 28.49 27.95 27.91 28.08 28.31 28.20 G

ol
dh

ill
 

128:1 26.79 26.37 26.30 26.45 26.64 26.59 
8:1 38.94 38.91 38.56 38.70 38.94 39.15 

16:1 35.72 35.54 35.16 35.27 35.67 35.93 
32:1 32.64 32.36 31.95 32.02 32.50 32.76 
64:1 29.82 29.55 29.02 29.13 29.59 29.86 

Le
na

 

128:1 27.35 27.12 26.56 26.69 27.02 27.32 
8:1 27.95 27.85 27.76 27.69 28.19 27.82 

16:1 25.80 25.66 25.54 25.50 26.04 25.66 
32:1 24.02 23.87 23.77 23.76 24.27 23.79 
64:1 22.58 22.44 22.35 22.39 22.79 22.34 B

ar
ba

ra
 

128:1 21.50 21.36 21.27 21.34 21.62 21.33 
8:1 38.92 37.76 37.81 38.21 38.58 38.60 

16:1 34.65 33.40 33.38 33.87 34.24 34.19 
32:1 31.22 30.17 30.09 30.48 30.90 30.71 
64:1 28.48 27.62 27.59 27.86 28.22 27.98 B

oa
ts

 

128:1 26.23 25.63 25.58 25.85 25.95 25.88 
8:1 37.46 37.05 35.61 39.33 36.33 39.35 

16:1 30.03 29.45 28.18 29.84 29.20 30.10 
32:1 25.58 25.15 24.30 25.02 24.96 25.21 
64:1 22.62 22.29 21.86 22.10 22.20 22.40 

Y
og

i 

128:1 20.60 20.26 20.06 20.14 20.25 20.47 
8:1 28.50 28.47 28.32 28.26 28.61 28.57 

16:1 25.85 25.76 25.62 25.62 25.90 25.82 
32:1 24.09 23.96 23.83 23.86 24.08 24.01 
64:1 22.85 22.75 22.62 22.66 22.83 22.77 B

ab
oo

n 

128:1 21.98 21.89 21.79 21.82 21.95 21.90 
Table 3: Still image compression performance comparisons. 
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