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ABSTRACT

Harmonizable processes form a huge and useful class of non-
stationary random processes. In this paper, we will discuss
the properties of, and some consequences of employing a nat-
ural choice of complex valued densities to characterize the
harmonizable class. In particular, we will discuss the Hilbert
space geometry of the resulting complex time-frequency de-
scription (related to the Rihaczek distribution), and the dual-
frequency description (related to the Loève spectrum). We
will demonstrate that useful normalized nonstationary gen-
eralizations of coherence emerge from this picture. Finally,
we extend the formalism to random fields and to higher-order
cases, and we will discuss possible estimators.

1. INTRODUCTION

Nonstationary random processes are often characterized in
terms of their time-frequency behavior [3, 14, 23]. Several
different approaches has been taken in order to provide useful
descriptors, ranging from straightforward short-time Fourier
transforms, to bilinear densities among which the Wigner-
Ville (WV) spectrum has a special standing [3, 9, 13].

Even though the WV spectrum is real valued, it is not
everywhere non-negative [3, 9, 13]. Thus, WV spectra do
not admit interpretations in terms of power as a function
of time and frequency. A tremendous effort has been in-
vested to reduce the negativeness of the WV, despite the ex-
istence of Wigner’s theorem which states that there exists
no time-frequency representation that is bilinear, has correct
marginals, and is non-negative everywhere [22].

In this paper, we will seemingly remove ourselves even
further from the intuitive description of power as a function
of time and frequency. In fact, we will argue that certain
complex valued distributions provide very useful insight into
processes belonging to the harmonizable class. The key is to
identify other meaningful interpretations than that of power
per time and frequency, since Wigner’s theorem already tells
us that such an interpretation is impossible for bilinear repre-
sentation.

As will be shown, a certain natural choice of time coor-
dinates for second order correlations, leads to the Rihaczek
spectrum as the corresponding time-frequency description,
and the Loève spectrum as the corresponding dual-frequency
description. Both the Rihaczek and the Loève spectra are
complex valued, even for real data series. Powerful in-
terpretations in terms of Hilbert space inner products ex-
ists, however, and the corresponding vector space geometry
leads to time-frequency and dual-frequency coherence func-
tions. These coherences generalize conventional coherences
for stationary processes, to nonstationary processes belong-
ing to the harmonizable class.

2. HARMONIZABLE PROCESSES

Let X(t), t ∈ It , be a real valued stochastic process, where
It denotes some index set for a time-like variable t. For ex-
ample, time could be continuous, for which It ⊆ R, or time
could be discrete, for which It ⊆ Z.

Assume now that the stochastic process X(t) has the
spectral representation [2]

X(t) =
∫

e j2π f tdX̃( f ) (1)

where dX̃( f ) is the complex valued increment process (or
the generalized Fourier transform) of the process X(t). If
time is continuous, the integration limits in Eq. (1) are ±∞,
and if time is discrete, the limits are ±1/2∆t, where ∆t is the
equidistant sampling interval. Since we assume X(t) ∈ R,
the increment process has a useful Hermitian symmetry,
dX̃∗( f ) = dX̃(− f ), where asterisk denotes complex conju-
gation.

The class of harmonizable nonstationary processes is
now defined as the processes with non-orthogonal incre-
ments [12, 1, 15], i.e.,

EdX̃( f1)dX̃( f2) = SX ,L( f1, f2)d f1d f2, (2)

where SX ,L( f1, f2) is some complex valued function of f1 and
f2. The dual-frequency function SX ,L( f1, f2) is often called
the Loève spectrum of the process. The representation (1)
with (2) is possible if SX ,L( f1, f2) satisfies the Loève criterion∫ ∫ ∣∣∣SX ,L( f1, f2)

∣∣∣d f1d f2 < ∞. (3)

In this case, the relation between the temporal correlation
function and the Loève spectrum takes the form [12]

EX(t1)X(t2) =
∫∫

e j2π( f1t1+ f2t2)SX ,L( f1, f2)d f1d f2. (4)

From Eq. (4) we understand that in this representation, spec-
tral correlation among different frequency components is re-
sponsible for the nonstationarities. Knowing the spectral cor-
relation in detail is therefore useful for characterizing the na-
ture of the nonstationarity of X(t).

Note that stationary processes are also included in (1), (2)
if the Loève spectrum is confined to a delta-ridge along the
diagonal f1 =− f2,

SX ,L( f1, f2) = SX ( f1)δ
(

f1 + f2

)
. (5)

Here, SX ( f ) ≥ 0 is the conventional power spectral density.
Thus, stationary processes do not possess spectral correla-
tions, and the line f1 + f2 = 0 signifies the so-called station-
ary manifold in the dual-frequency plane.
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3. BASIC REPRESENTATIONS

In the following, we will assume that the process is harmo-
nizable, i.e., the spectral representation (1) with (2) holds.
Results confined to energy processes were presented in [18].

As our basic nonstationary second order moment in the
time domain, we define the correlation function of X(t) by

MX (t,τ)≡ EX(t)X(t + τ). (6)

Here, t is a global (or absolute) time variable, and τ is a local
(or relative) time variable.

Expressing the nonstationary correlation function (6) by
means of the non-orthogonal spectral representation, we ob-
serve that

MX (t,τ) = E
∫

e j2π f ′tdX̃( f ′)
∫

e j2π f (t+τ)dX̃( f ) (7)

=
∫ ∫

e j2πνt e j2π f τ SX (ν , f )dνd f , (8)

where ν = f + f ′. We thus understand ν as a frequency off-
set or a local frequency relative to the global frequency f .
We immediately identify the dual-frequency spectral density
SX (ν , f ) as

SX (ν , f )dνd f = EdX̃∗ ( f −ν)dX̃( f ). (9)

We observe that the correlation function and the dual-
frequency spectrum form a 2-dimensional Fourier transform
pair:

MX (t,τ)←→ SX (ν , f ). (10)

Note that we find it more convenient to deal with the fre-
quency pair (ν , f ) rather than ( f1, f2). As will be discussed
later, the local frequency ν is by definition the nonstationary
frequency coordinate, while the global frequency f is the sta-
tionary coordinate. Thus, any dependence on ν is a sign of
nonstationary behavior.

We understand that our dual-frequency spectrum
SX (ν , f ) is related to the Loève spectrum by a coordinate
transformation. Note also that SX (ν , f ) is complex valued,
even for real valued processes.

We now understand that we may invoke Fourier trans-
forms with respect to any of the variables t, ν , τ , and f , in or-
der to exhaust all possible time and frequency representations
to the n-th order. A very important quantity is now derived
by means of an inverse Fourier transform of SX (ν , f )dνd f ,
with respect to the local frequency ν . We obtain

PX (t, f )d f ≡ d f
∫

e j2πνtSX (ν , f )dν (11)

= EX(t)dX̃( f )e j2π f t (12)

where PX (t, f ) is the time-frequency spectral density for the
process X(t). Note that PX (t, f ) is a function of global time
t and global frequency f . It is important to note that the
time-frequency and the dual-frequency spectra are a Fourier
transform pair in the variables t and ν ,

SX (ν , f )←→ PX (t, f ). (13)

From Eq. (12) we understand that the complex valued
time-frequency spectrum PX (t, f ) is in fact a generalization
of the deterministic Rihaczek distribution [16, 3] to random

MX(t,τ)
τ−→ f−−−→ PX(t, f )yt→ν

yt→ν

AX(ν ,τ) −−−→
τ−→ f

SX(ν , f )

Figure 1: Fourier relations between the basic polyspectral
densities of nonstationary harmonizable processes.

processes. It has been a widespread opinion that the Ri-
haczek distribution is of little value since it does not admit
an interpretation as a distribution of power as a function of
time and frequency. However, as will be shown in subse-
quent sections, the complex time-frequency representation
has a powerful geometrical interpretation, which we believe
is the correct way to understand this complex quantity.

The fourth and last quantity we may construct results as
an inverse Fourier transform of SX (ν , f )dνd f , with respect
to the global frequency vector f . This yields

AX (ν ,τ)dν ≡ dν

∫
e j2π f τ SX (ν , f )d f (14)

= E
∫

dX̃ (ν− f )dX̃( f )e j2π f τ (15)

The quantity AX (ν ,τ) is the ambiguity function, which is a
function of local frequency ν and local time τ . We observe
that SX (ν , f ) and AX (ν ,τ) constitute a Fourier transform pair
in the variables f and τ ,

SX (ν , f )←→ AX (ν ,τ). (16)

We now understand that any of the four basic quanti-
ties MX (t,τ), PX (t, f ), AX (ν ,τ), and SX (ν , f ) may be used
to characterize the second order behavior of a nonstationary
stochastic process.

It is very important to note that these four basic densities
are interrelated by Fourier transforms, as illustrated by the
four corners diagram in Fig. 1.

It is an interesting historical fact that Hagfors already in
the early 1960’s [6, 7] considered quantities very similar to
those discussed in the present paper. His original applica-
tions were the study of fading radar backscatter from the
lunar surface [6], and the characterization of nonstationary
random propagation circuits [7].

4. MARGINALS

We are interested in the marginals of the global time – global
frequency spectrum PX (t, f ). The time marginal is readily
derived as ∫

PX (t, f )d f = MX (t,0) = EX2(t). (17)

The frequency marginal is

d f
∫

PX (t, f )dt =
∫

EX(t)dX̃( f )e j2π f tdt (18)

= E
∣∣∣dX̃ ( f )

∣∣∣2
= SX (0, f )(d f )2.(19)
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It is interesting and reassuring to note that the time marginal,
Eq. (17) is in fact the instantaneous power of the process, and
the frequency marginal, Eq. (19) is the conventional power
spectrum that one would normally associate with a station-
ary process. Thus, even though PX (t, f ) is a complex val-
ued quantity in the (t, f )-plane, both its marginals are real
and non-negative. Note that this does in no way implies that
PX (t, f ) could be interpreted as a power distribution in time
and frequency.

5. TWO IMPORTANT COHERENCES

The concept of coherence is very important when quantifying
linear relationships within random processes. Various defini-
tions of a quantity measuring the degree of coherence can be
found in the literature. The value of such a measure should
preferably be bounded between zero and one. Normalized
versions of SX (ν , f ) and PX (t, f ) are called for since the con-
cept of coherence is related to the phase of the increment
process, rather than its magnitude.

5.1 Dual-frequency coherence

A meaningful way of defining a dual-frequency coherence
function can be obtained by recognizing the fact that the
dual-frequency spectrum SX (ν , f ) can be expressed as a
Hilbert space inner product [5]

SX (ν , f )dνd f =
〈

dX̃( f ) , dX̃( f −ν)
〉

, (20)

where the Hilbert space inner product between any two com-
plex valued random variables X and Y is defined by

〈X , Y 〉 ≡ EXY ∗. (21)

Now, there is an angle ψ associated with any inner product
〈X , Y 〉, defined by

cosψ ≡ 〈X , Y 〉√
〈X , X〉〈Y , Y 〉

. (22)

We can now define the dual-frequency squared coherence
function [21, 5]

ρ
2
X (ν , f )≡ cos2

ψX (ν , f )

=

∣∣∣〈dX̃( f ) , dX̃( f −ν)
〉∣∣∣2〈

dX̃( f ) , dX̃( f )
〉〈

dX̃( f −ν) , dX̃( f −ν)
〉

=

∣∣∣EdX̃∗( f −ν)dX̃( f )
∣∣∣2

E
∣∣∣dX̃( f −ν)

∣∣∣2
E

∣∣∣dX̃( f )
∣∣∣2

=
|SX (ν , f )|2

SX (0, f −ν)SX (0, f )
,

(23)

The Cauchy-Schwarz inequality states that

|〈X , Y 〉|2 ≤ 〈X , X〉〈Y , Y 〉 , (24)

with equality if and only if X = αY for some α ∈R. Applied
to (20) this gives

0≤ ρ
2
X (ν , f )≤ 1, (25)

with equality if and only if

dX̃( f −ν) = αdX̃( f ). (26)

By expressing the complex valued increment processes
dX̃( f ) in polar form

dX̃( f )≡ |dX̃( f )|e jφX ( f ), (27)

we arrive at the fundamental result that we have full coher-
ence between frequency components at f and f − ν if and
only if

φX ( f −ν) = φX ( f )+ kπ k ∈ Z. (28)

5.2 Time-frequency coherence

The complex time-frequency spectrum has a similar repre-
sentation, since PX (t, f ) is a Hilbert space inner product

PX (t, f )d f =
〈

dX̃( f )e j2π f t ,X(t)
〉

. (29)

The corresponding time-frequency squared coherence
function [5] can be defined by

γ
2
X (t, f ) =

∣∣∣〈dX̃( f )e j2π f t , X(t)
〉∣∣∣2

〈X(t) , X(t)〉
〈

dX̃( f ) , dX̃( f )
〉

=

∣∣∣EX(t)dX̃( f )e j2π f t
∣∣∣2

EX2(t)E
∣∣∣dX̃( f )

∣∣∣2 =
|PX (t, f )|2

MX (t,0)SX (0, f )
,

(30)

Again, the Cauchy-Schwarz inequality guarantees that
γ2

X (t, f ) is bounded by 0 and 1, and that full coherence at
global time t and global frequency f is achieved if and only
if

X(t) = αdX̃( f )e j2π f t . (31)

Employing the polar form of the increment process, we can
alternatively state that full coherence at time t for frequency
f is achieved if and only if

φX ( f ) =−2π f t + kπ k ∈ Z. (32)

6. GENERALIZATIONS AND EXTENSIONS

One may readily extend the formalism presented here to a
number of important and relevant generalizations.

The generalization to time-frequency and dual-frequency
representations of a pair of processes, is straightforward,
as shown in [21, 10]. The resulting generalized cross-
coherences are important for the study of two-channel prob-
lems, e.g., for nonstationary linear time-variant systems.

The generalization to time-varying higher-order
polyspectra and higher-order time-frequency representations
is non-trivial [4]. In a recent paper [5], the theoretical
framework was laid, and several important applications of
the higher-order theory was identified.

A generalization to random fields is mandatory for the
description of temporally nonstationary and spatially inho-
mogeneous phenomena. Such phenomena may occcur e.g.
in acoustic and electromagnetic wave propagation. In par-
ticular, a theory of nonstationary and inhomogeneous ran-
dom fields may be useful for improving the results from ar-
ray processors. Nonstationary and inhomogeneous random
fields has been discussed in [10, 11].
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7. ESTIMATORS

We can see from (1) and (9) that the spectral properties of
the process X(t) is contained in the (unobservable) incre-
ment process dX̃( f ). With this in mind, estimation of the
dual-frequency spectrum (9) and its generalizations can now
be viewed as estimation of the moments of dX̃( f ). Thus,
estimation of the increment process itself is of great inter-
est. This important issue was treated in detail in Thomson’s
seminal 1982 paper on multitaper spectral estimators [19],
with further details in [20]. Interesting applications of dual-
frequency spectral estimation were included in [8] and [21].

Other important classes of estimators for the time-
frequency distribution were presented in [17], and a compre-
hensive review including numerical examples can be found
in [10]. The last reference shows examples of estimators of
the quantities in all four corners of Fig. 1.

8. DISCUSSION AND CONCLUSIONS

As shown in this paper, the complex valued Rihazcek time-
frequency spectrum is the natural time-frequency distribution
to associate with harmonizable random processes. Likewise,
the complex valued Loève dual-frequency spectrum appears
to be the natural dual-frequency description.

It was argued that these quantities are not to be under-
stood as power as a function of time and frequency, and
dual-frequency, respectively. Instead, we offered an expla-
nation of these quantites in terms of two different Hilbert
space inner products. We defined associated time-frequency
and dual-frequency coherences, respectively, and argued that
these were the relevant second order quantities for character-
izing the nonstationarities. We thus conclude that the time-
frequency squared coherence is a measure of a relevant time-
frequency inner product, and the dual-frequency is a measure
of a relevant dual-frequency inner product.

Armed with the Hilbert space inner product interpreta-
tions, we firmly believe that the Loève dual-frequency spec-
trum and the Rihaczek time-frequency spectrum will experi-
ence a revival, and become useful for the analysis of nonsta-
tionary random processes.
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