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ABSTRACT

The response of the human auditory system to amplitude modula-
tion (AM) presents oscillating activity in stereoelectroencephalo-
graphic (SEEG) signals, the oscillation frequency being very close
to the modulation frequency (MF). Numerical studies that may be
realized on these SEEG signals mainly focus on the estimation of
three parameters: the amplitude, phase and frequency of the os-
cillation. To improve their estimation, noise reduction techniques
are discussed. The estimations errors are analyzed on simulated
and real data. Results show that the parameters variability may be
explained only by the signal-to-noise ratio (SNR) level in SEEG
recordings.

1. INTRODUCTION

Although sound is decomposed in frequency bands in cochlea, hu-
man being perceives the temporal envelope of a sound, which plays
an important role in speech intelligibility. However, psychoacous-
tical experiments conducted by Viemeister in 1978 showed that the
higher the frequency of the AM envelope, the worse our ability
to hear it [1]. This suggests that some specific post-cochlea au-
ditory filters discriminate the speech temporal envelope. Electroen-
cephalography analysis revealed later an oscillating electrical activ-
ity in the auditory brain areas in response to amplitude modulated
noise ([2], [3]). This activity reproduces almost perfectly the AM
frequency but shows an amplitude varying with the precise place
where it is recorded. To lead a statistical study on these oscillations,
we extract their three characteristic parameters that are the ampli-
tude, phase and frequency. In this paper, section 2 is devoted to
the database and materials. Then, we derive in section 3 a model
for auditory responses. After the presentation of some estimation
techniques (section 4), we will explain the parameters variability
(section 5).

2. MATERIALS

Twenty epileptic patients suffering from partial refractory epilepsy
participated in this study (eight males, twelve females, 18-50 years
old). They were implanted with chronic SEEG electrodes ([4], [5])
in various cortical structures for surgery exploration. The anatomi-
cal positions of the leads were determined in a parallel study [6] and
we only considered leads in or near auditory areas for our study. A
total of 208 leads in the right (9 patients) or left auditory cortex (11
patients) were available in the whole database.

Stimuli were 1-second long white noises with a sinusoidal am-
plitude modulation at frequencies 4, 8, 16, 32, 64, and 128 Hz and
a modulation depth of 100 %. Stimuli were shaped by rising and
falling 25 ms cosine ramps/damps to avoid auditory response to
sudden sound rise. The energy of stimuli is made identical. Sounds
were presented binaurally via headphones to the listener by series
of 50 to 100 stimuli of two randomly alternated MF (128/16 Hz ;
4/32 Hz ; 8/64 Hz). They were generated using a 16-bit D/A con-
verter at a sampling frequency of 44.1 kHz.

White noise carriers have been used because they have flat long-
term power spectrum and so they excite all afferent paths of the
tonotopic decomposition. In this study, only intervals presenting

some clear oscillation and free of transient response were consid-
ered. Their length was around 800 ms.

3. MODEL

For a given lead, the j-th response to the stimulus is named an epoch
and may be modelized on the considered interval as a noisy sinu-
soidal activity

x( j)(t) = a( j).sin

(
2π

f ( j)
0
fe

t +φ ( j)

)
+n( j)(t) (1)

= s( j)(t)+n( j)(t) (2)

at time t, where a( j), f ( j)
0 and φ ( j) are respectively samples of

three random variables A (amplitude), F0 (observed oscillation fre-
quency) and Φ (phase). The quantity n( j)(t) is a sample of the brain
activity, N, seen as a noise and s( j)(t) is a sample of the useful sig-
nal S, seen as a function of t, A, F0 and Φ. In our database, 50 to 100
samples of each variable are available for a given lead. The aim of
the study is to evaluate the mean amplitude E[A], frequency E[F0]
and phase E[Φ] of the oscillation for each lead.

4. SPECTRAL ESTIMATION

Given the model of eq. 1, our aim is to estimate E[A], E[F0] and
E[Φ] with minimal influence of noise N. Then, we estimate stan-
dard deviation (STD) on real and simulated data for A, F0 and Φ, to
study physiological reproducibility of the response on all epochs.

We denote by γx( j) and γs( j) the power spectral densities (PSD)
of x( j) and s( j) respectively. PSDs are implicite functions of f and
for convenience, the variable f is omitted in the rest of the paper.
In the following, the mean of a variable v( j) on j will be denoted
by v and the mean of the PSD of v( j) will be denoted by γv( j) . For a
single epoch, we may estimate the PSD of γs( j) , to obtain amplitude
and frequency estimation of the oscillation of each epoch, in the
following way,

γ̂s( j) = X ( j)∗.X ( j) (3)

where X ( j) is the Fourier transform of x( j) and ∗ denotes conjugate
operator.

To estimate the signal (S) PSD, γs, we may average epochs PSD

γ̂APSD
s = γx( j) =

1
p

p

∑
j=1

X ( j)∗X ( j) (4)

where p is the number of epochs. Noise is not reducted but this
estimator is phase independent, that may be useful if oscillations
are not well synchronized in the course of epochs.

To reduce disturbances due to noise in estimating E[A], E[F0]
and E[Φ], we benefit from information on all epochs.
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4.1 Noise reduction

To estimate γs, noise reduction algorithms often require the knowl-
edge of the noise PSD. The first method consists in learning the
noise PSD between stimuli (periods of spontaneous SEEG activ-
ity). Another method consists in considering that the signal can
be estimated by the auditory evoked potential (AEP) itself, i.e.
x(t) = 1

p ∑p
j=1 x( j)(t). It is based on the fact that signals s( j) are

synchronous. In this way, the noise PSD is given by

γ̂n = γx( j)−x. (5)

Due to the small number of epochs, there exist some local varia-
tions in the noise PSD estimated either with inter-stimuli activity or
with γ̂n given by eq. 5. For simplicity reasons, we decide to use eq.
5 in our study. On real signals, the oscillations in epochs x( j) are not
strictly identical in amplitude and phase and so there is a residual
oscillation in x( j)− x. Consequently, we slightly improve the noise
PSD estimation by carrying out spline interpolation around the MF.
Experiments carried out show the same levels of noise PSD with or
without stimuli. In the following, we describe various estimators for
γs, some of them using this interpolated noise PSD. Let us indicate
that, in numerical applications, the possible negative values in PSD
estimations will be set to 0.

4.1.1 Time averaging method

The signal estimated by time averaging and corresponding to the
AEP does not require noise PSD estimation and is given by

ŝ(t) = x(t) =
1
p

p

∑
j=1

x( j)(t) (6)

where p is the number of epochs available for a lead. It is widely

used in AEP studies and minimizes ∑p
j=1

(
x( j)− ŝ

)2
. The PSD of

this estimate ŝ will be noted γ̂TA
s in the following.

4.1.2 Spectral subtraction

Signal PSD estimated by amplitude spectral subtraction introduced
by Boll in 1979 [7] is given by

√
γ̂ASS

s =
√

γx( j) −
√

γ̂n. (7)

In the same way, the power spectral subtraction estimator is

γ̂PSS
s = γx( j) − γ̂n. (8)

This is maximum likehood estimation of PSD under gaussian
assumption for N and S ([8]). Calculus shows that

γ̂PSS
s = γx( j) − γx( j)−x = γ̂x = γ̂TA

s . (9)

The power spectral subtraction estimator is equivalent to the PSD
estimator of the time averaged signal. Moreover, γ̂PSS

s is the PSD
estimated with the pseudo-Wiener filter ([8]) when the filtering is
applied to γx( j) .

4.1.3 McAulay and Malpass estimator

An optimal amplitude estimator was proposed by McAulay and
Malpass ([9]), based on a sinusoidal signal, with amplitude and
phase unknown, and adapted to real-time processing by use of a pri-
ori and a posteriori information in sequential frames. In our study,
SEEG epochs are not seen as sequential frames and the estimator
may be written

√
γ̂MM

s =

√
γx( j) +

√
γx( j) − γ̂n

2
(10)

with signal presence probability fixed to 1.

4.1.4 Averaged cross-spectra based method

We estimate the signal PSD using cross-products of epochs spectra,
so that

γ̂ACS
s =

1
p(p−1)

p

∑
k=1

p

∑
j=1, j 6=k

X (k)∗X ( j). (11)

We have the following relation

γ̂TA
s = X∗X =

1
p2

p

∑
k=1

p

∑
j=1, j 6=k

X (k)∗X ( j) +
1
p2

p

∑
k=1

X (k)∗X (k) (12)

=
(p−1)

p
γ̂ACS

s +
1
p

γ̂APSD
s . (13)

Noise is assumed to be uncorrelated between two different epochs,
so γ̂ACS

s is a part of γ̂TA
s where the noise energy is in theory null

contrary to γ̂APSD
s . If the signal is highly correlated between epochs,

it is pertinent to consider γ̂ACS
s as an estimator of the signal PSD

since γ̂ACS
s ∼

p→∞
γ̂TA

s .

4.2 Frequency and amplitude estimation

Given the signal PSD estimated with the previous methods, we at-
tempt to estimate the real amplitude and frequency of the oscilla-
tion. To this end, we take the frequency and the amplitude of the
nearest spectral peak to the MF (4, 8, 16, 32, 64, 128 Hz).

4.3 Simulations

We tested noise reduction methods by simulation with p = 50

epochs, f ( j)
0 = 4 Hz, signal length q = 800 ms and sampling fre-

quency fe = 1 kHz. Amplitude was fixed to a( j) = 10 and phase
was set to φ ( j) = 0. For noise n( j) modelling, we derive an AR
model from all epochs recorded in the primary auditory cortex,
where the averaged signal has been subtracted for each lead. Ex-
periments showed the same shape of noise PSD between all MF.
Consequently, the AR modelling is performed at MF equal to 128
Hz, due to the low level of auditory evoked response at this high
MF. The AR coefficients are given in Table 1. For this simulation,

a0 = 1 a1 =−1.6471 a2 = 0.6041 a3 = 0.1676
a4 =−0.0801 a5 =−0.0429 a6 = 0.0075

Table 1: AR coefficients for the SEEG generating model

the signal-to-noise ratio (SNR) is defined by

SNR1 = 10log10

(
V [s]
V [n]

)
(14)

for a lead. Due to some equivalences related in section 4.1, we
tested the estimators γ̂ASS

s , γ̂ACS
s , γ̂TA

s , γ̂MM
s and γ̂APSD

s . We included
also an estimation of the PSD using a Hamming windowed version
of the time averaged signal (γHWTA) to see the window influence.
Results presented in figure 1 concern the mean amplitude, the root
mean square (RMS) error on the MF estimate and the RMS error on
exact amplitude.

The averaged cross-spectra based method seems to be the best
estimator for amplitude estimation (fig. 1a and 1b). It slightly out-
performs the time averaging method. Nevertheless, the interesting
performances of the time averaging method justifies the use of av-
eraged responses in studies based on event related potentials. Win-
dowing brings no real advantages. Using averaged PSD (eq. 4) leads
to erroneous values in amplitude and frequency estimation for low
SNR. Amplitude spectral subtraction leads to important bias for am-
plitude estimation for low SNR levels. Figure 1c indicates that the
proposed methods cannot identify the oscillation peak below a SNR
of -15dB.
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Figure 1: (a) Estimation of amplitude (b) RMS error on amplitude
(c) RMS error on frequency of the oscillation, function of the SNR
level

4.4 Phase estimation

To keep a sense to phase comparisons, the phase of an oscillation is
evaluated at the true MF ( fm = 4,8,16,32,64,128 Hz) even if the
oscillation frequency is not exactly the same. Given an epoch, the
phase can be estimated using the discrete Fourier transform of the
observation

θ̂ ( j) = arg

(
1
q

q

∑
t=1

x( j)(t)e−2iπ fm
fe

t

)
. (15)

The averaged phase may be deduced from all epochs by

θ̂E = arg

(
p

∑
j=1

eiθ̂ ( j)

)
. (16)

In this expression, we assume that the amplitude of the oscillation
does not vary between individual responses. Using the averaged
signal (eq. 6) instead of x( j)(t) in eq. 15, we obtain another estimator

θ̂TA = arg

(
1
q

q

∑
t=1

x(t)e−2iπ fm
fe

t

)
. (17)

With parameters a( j) = 10, f ( j)
0 = 8, p = 50, and 500 trials for

each SNR level, the lowest STD is obtained for θ̂TA (figure 2).
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Figure 2: Phase estimation using eq. 17 (solid line) and eq. 16
(dash-dotted line), versus the SNR.

5. PHYSIOLOGICAL REPRODUCIBILITY OF THE
RESPONSE

Considering the model in eq. 1, we analyze now the STD on the
parameters A, F0, and Φ observed on the epochs for each lead. This
STD may have a physiological origin such as a reproducibility prob-
lem, and/or may be also caused by noise disturbances. Having now
a PSD estimator for S (γ̂ACS

s ), and a noise PSD estimator (interpo-
lated γ̂n PSD), we estimate the SNR for the SEEG oscillating activ-
ity for each lead

SNR2 = 10log10

(
γ̂ACS

s

γ̂n

)
. (18)

We use the methodology described in section 4.2 applied to eq. 3 to
obtain the oscillation amplitude and frequency for an epoch. We ob-
tain the phase for an epoch using eq. 15. Then, we compare the STD
observed on simulated data and on real data for each parameter.

For simulated data, we evaluated the STD on 1000 epochs of

800 ms length using eq. 1 where a( j) = 10, φ ( j) = 0 and for f ( j)
0 =

4,8,16,32,64,128 Hz. In figures 3, 4, 5 results are shown for MF
equal to 16 Hz and 64 Hz, but they are similar for other MF.

We note that the STD observed on real data may be explained
entirely by the SNR level, for each parameter (amplitude, frequency
and phase). This suggests that the theoretical model really observed
for the oscillations produced by amplitude modulated noises is

x( j)(t) = a.sin

(
2π

f0
fe

t +φ
)

+n( j)(t) (19)

where a, f0, and φ are practically constants.

6. CONCLUDING REMARKS

This preliminary study is a key-point before any analysis of the
oscillation. The study on signal estimators validates the use
of the averaged signal and shows that the technique based on
cross-spectra is well adapted to SEEG data. The reproducibility
of the physiological response (amplitude, frequency, phase) is
acceptable, since the distribution STD of these three parameters
only depends on the SNR level in SEEG activity.
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Figure 3: STD of amplitude estimation obtained on real data and
simulated data for MF equal to (a) 16 Hz and (b) 64 Hz
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