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ABSTRACT

Traditionally, Peak to Average Ratio (PAR) reduction in dig-
ital subscriber line (DSL) transmitters focuses on a digital-
domain signal, either at the output of the baseband process-
ing block or at the input of the digital-to-analogue converter
(DAC). However, analysis of a DSL transceiver shows that
the power dissipation is highly dependent on the PAR at a
certain node inside the line driver. Thus, in order to be fully
effective, the algorithm design should include the power am-
plifier dynamics. A typical, actively terminated, line driver is
analysed and a model is constructed for PAR reduction pur-
poses. The PAR reduction algorithm is then extended to take
advantage of the model. Simulations show that algorithms
which are designed to reduce PAR at the new, physically mo-
tivated, node obtain about 0.5 dB lower PAR evaluated at this
node compared to methods that focus on the PAR of the DAC
input.

1. MOTIVATION

Enormous investments have been made in the copper-based
infrastructure during the last century. Discrete Multitone
(DMT) technology such as ADSL enables high-speed data
transmission over the existing telephone lines. Operators, in
particular alternative providers, who often have to rent facili-
ties closely located to highly populated areas for their equip-
ment, try to pack DMT transceivers for as many customers as
possible into the available space. An important limiting fac-
tor with this respect is power dissipation in the transmitter,
i.e., the part of the consumed power that is not transmitted
on the line.

The line driver is the circuit that provides the interface
of the transceiver to the physical line. It is usually an ampli-
fier of class AB. Typically, 70% of the power dissipation of
a DMT transceiver occurs in the line driver [1]. To avoid
distortion of the transmitted signal, the line driver should
provide linear amplification over the amplitude span of the
signal. Typical line drivers have a power dissipation that is
approximately proportional (see [2]) to the span of the linear
amplification region at a certain node inside the line driver.
It is thus desirable to keep the signal swing at this point as
small as possible.

With DMT based transmission, the sample amplitude dis-
tribution of the transmitted signal is approximately Gaussian,
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Figure 1: Block diagram of a DMT-based transmitter show-
ing three different points a PAR reduction criterion can focus
on. The node inside the line driver labeled vS is the physically
motivated point. The PAR at this point directly influences the
power consumption of the system.

thus there is a probability of very high amplitude for some
samples [3]. A number of methods have been suggested
[3-6] for the reduction of the signal’s Peak to Average Ra-
tio, PAR1. Usually, PAR reduction methods concentrate on
a signal in the digital domain, before or after the transmit
filters (see Figure 1). In the following, focus of the PAR re-
duction is moved to a point inside the line driver, where the
PAR directly influences the power dissipation. The signal at
this point does not coincide with the signal input to the line
driver and the analysis and algorithm design therefore require
detailed knowledge of the line driver.

A model that is generally applicable to actively termi-
nated line drivers is developed in Section 2 and used to ex-
tend an important PAR reduction algorithm in Section 3.
Simulations evaluating the performance of the idea for an
ADSL downstream link, as described in annex A of the corre-
sponding standardisation document [7], are presented in Sec-
tion 4.

1The PAR of a signal x(τ) in the interval T is defined as

PAR =
max

τ∈T |x(τ)|2

σ2 , where σ2 is the average symbol energy before PAR
reduction. Normalising by the energy after PAR reduction would cause a
bias towards lower PAR values.
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Figure 2: A simplified block diagram of a line driver with
active synthesis of the output impedance.

2. MODELLING THE LINE DRIVER

A typical, simplified line driver structure is shown in Fig-
ure 2. Line drivers are often built around two identical am-
plifiers such as the one in Figure 2, where one of them acts
in counter phase. Each amplifier thus provides half the re-
quired voltage and half the output resistance. Since the two
amplifiers are identical, PAR reduction considerations only
need to focus on one of them. Apart from producing the
required voltage amplification and current driving capabili-
ties, the line driver should also minimise the receive signal
energy loss. This implies that the output impedance should
match the impedance of the load, over the frequency band of
interest. In traditional design, this is achieved by connecting
a resistor, here referred to as RS, with the same impedance
as the load in series with the line driver and the line. This
corresponds to R1 = ∞ in Figure 2. Such a design has the
drawback of high power dissipation; half of the power of the
line driver is wasted in RS.

In modern designs the output resistance is actively syn-
thesised, and RS can be made smaller without sacrificing the
quality of the received signal. The line driver treated in the
following uses this kind of active termination.

2.1 Selecting a target point

The main goal of PAR-reduction is to lower the power con-
sumption of the line driver. For the class of amplifiers treated
here that means lowering the span of the linear amplifica-
tion region. This is only possible if the signal swing is made
smaller, which means reducing the highest peaks in the sig-
nal.

The maximum, in terms of voltage, of the signal vS(t)
measured at the point vS in the line driver is limited by the
supply voltage, and it is thus the voltage span at this node
that sets the limits on the linear amplification region. PAR
reduction should aim at keeping the signal swing of vS(t) as
low as possible. This insight, gained from an investigation of
parts of the transceiver that are out of scope in most of the
work done on PAR reduction, may be valuable for the study
of algorithms and future research.

Line drivers are designed to provide linearity of the signal
vL(t) measured at the point vL, not vS(t), while PAR reduc-
tion should aim at vS(t), not vL(t). For the passively termi-
nated design, cable dynamics would affect the transfer func-
tion to vL but not to vS. In actively terminated designs, which
are considered here, cable dynamics enter both transfer func-
tions, although in slightly different ways.

The signal vS(t) differs both from the input signal x(t) of
the line driver and from the signal vL(t) measured at the load.
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Figure 3: Waveforms of vS(t): Simulated waveforms for the
ETSI loop test cases defined in [8] and for a purely resis-
tive load ZL = 100Ω (line marked with squares); Measured
waveform (line marked with circles) for ETSI40 3.5 km. Sig-
nificant deviations occur only for the extreme (100m of the
ETSI90 cable) loop. The input was identical for all cases.

A model of the signal transformation from the input to this
node must be included in the PAR reduction algorithm.

With an ideal operational amplifier, the transfer function
H(ZL) of the system with input x(t) and output vS(t) is given
by

H(ZL)=
VS( f )
X( f )

=
(R3 +Z1)(ZLRS +R1RS +ZLR1)

ZL(Z1RS +Z1R1−Z2R3)+Z1RS(R1 +Z2)
,

(1)
where VS( f ) and X( f ) are the Fourier transforms of vS(t)
and x(t), respectively. The impedances ZL, Z1 and Z2 are
complex and frequency dependent. The dynamics of the loop
and the transformer enter the transfer function2 (1) via the
impedance ZL. A similar linear analysis on more detailed
circuit schemes for real line drivers yields models that give
excellent matches to measured data [2]. These measurements
further show that non-linear effects can be neglected in this
application.

2.2 Cable dependency

According to (1), the transfer function H(ZL) depends on the
load impedance ZL. The characteristics of the load vary with
the actual cable attached to the line driver. If the model used
for PAR reduction purposes is sensitive to variations of the
load impedance, that has to be addressed.

Figure 3 shows simulated waveforms of vS(t) for differ-
ent testloops and for a purely resistive load of ZL = 100Ω,
as well as a measured waveform. Variation of the cable
impedance does not cause large model deviations, except for
the comparably short (100m) and thick ETSI90 cable, which
causes a more oscillating signal. Simulations and measure-
ments show that, given an accurate model of the transformer,

2The transfer function to vL is dependent on the load characteristics also
in the passively terminated design, but as previously stated, vS(t) is the signal
of interest for PAR reduction.
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a 100Ω resistance approximates the cable impedance with a
negligible error, as long as no cables with extreme parame-
ters are used. Hence, as the PAR reduction algorithm can be
designed for a single representative load impedance, there is
no need to adapt the algorithm to the actual load when in-
stalling a system in a new environment.

2.3 Discrete time filter representation

If the impedances ZL, Z1 and Z2 can be approximated as
rational functions of s = j2π f , a closed-form discrete-time
representation of (1) can be found using the bilinear trans-
formation s′ = 2(8FNyquist) ·

z−1
z+1 , where z = e j2π f /(8FNyquist)

and FNyquist is the sampling frequency at the IFFT output.
The oversampling factor of eight is recommended in [3] and
[4] for a sufficiently accurate representation of an analogue
signal for PAR reduction purposes. For the line driver con-
sidered here and for the approximation ZL = 100Ω, the re-
sulting discrete-time filter has an IIR form with 9 poles and
9 zeros. We approximate this IIR form with a 20-tap FIR
filter h = [h[0] · · ·h[19]]. The filter operation can be rep-
resented by the convolution matrix Ald , whose first row is
h = [h[0] 0 · · ·0]. This form will be used in the next section.

The transmit filters, including an increase in sampling
rate, and the DAC are represented by the matrix Atx. The
entire transformation from the space of critically sampled
signals just after the IFFT (x′[n] in Figure 1) to the space of
oversampled signals in the vS domain can now be described
by the matrix A = AldAtx, which has size 512× 4352 for
our setup. This representation can be used to extend existing
PAR reduction methods in the sense that the PAR reduction
criterion is defined for vS(t) instead of x′[n]. In practice, im-
plementations may use the IIR or FIR structure instead.

3. EXTENSION OF THE TONE RESERVATION
METHOD

The tone reservation method, a promising PAR reduction
scheme suggested by Tellado [3], uses a selected set of tones
to modify the signal such that the PAR of the resulting sig-
nal is lowered. Finding a low-PAR solution is an optimisa-
tion problem, which can be formulated as a linear program.
Modifying the algorithm so that it takes into account the line
driver dynamics, we obtain the linear program

minimise
Č

γ

subject to

[
AQ̌ −1

−AQ̌ −1

][
Č
γ

]
≤

[
−Ax

Ax

]
,

(2)

where γ =
√

PAR is the crest factor. The vector Č is a length
2U vector (where U is the number of tones reserved for
PAR reduction) containing the PAR reduction symbols and
the matrix Q̌ represents a coordinate transform, mapping Č
onto the space of allowed PAR reduction signals. The trans-
formation A maps signals from x′[n] to the vS domain in the
line driver. With A = I, (2) corresponds the original prob-
lem considered by Tellado [3]. A similar approach to the one
presented here considers the transmit filters [6]. Note that,
while the criterion for PAR reduction is moved, the actual
PAR reduction signal is still added to the critically sampled
signal at the output of the IFFT block.

The extension of the model increases complexity signif-
icantly, which is mainly due to the oversampling. Even if

no line driver model would be used in the algorithm, inter-
sample behavior should still be taken into account. Thus, in
a fair comparison, the increased complexity caused by the
line driver modelling is modest.

The same problem formulation can be kept when us-
ing lower complexity active-set based algorithms, proposed
in [4]. Here, a good but suboptimal solution will be achieved
after a few iterations. Performance results of algorithms both
based on linear programming and on the active-set method
when focusing on vS are provided in the next section.

4. SIMULATION RESULTS

A simulation environment was built around the IIR model of
the actively terminated line driver and specifications for digi-
tal domain filters given in [9]. Three line driver transfer func-
tions were used in the simulations, corresponding to three
different ETSI test loops. The transfer function obtained for
the 100 Ω test loop was used in the PAR reduction algorithm.
This illustrates the dependency of the transfer function, and
thus the PAR reduction algorithm, to the load connected to
the line driver. The effect of these variations are illustrated
in Figure 5. The symbols were created using random tone
constellations. Ten tones, randomly selected from the trans-
mission band, were reserved for PAR reduction. The tone
selection problem is treated in [1].

Three distinct transmit path matrix models were tested.
The first model is a pure upsampling A = U8, the second
model is the digital transmit filter matrix A = U2Atx (a four
times increase in sampling rate is already included in the fil-
ter specifications), while the third represents the full model
A = AldU2Atx . The matrix Ui is a convolution matrix de-
scribing an upsampling operation by a factor i using a sinc
impulse response. Note that the comparison is fair in the
sense that all three models include the effects of oversam-
pling.

Figure 4 shows the performance of a linear programming
based algorithm using the three different models in terms of
clip probability evaluated at three different points in the sys-
tem. The results illustrate an important point: When com-
paring PAR reduction algorithms, the point in which PAR is
evaluated is critical. When PAR is evaluated after the IFFT,
the original method with A = U8 gives lower PAR than the
extended method. Also, when PAR is evaluated at the DAC
output, the method with the full line driver model performs
worse. Since the goal is to reduce power dissipation in the
line driver, the method with the best performance at vS should
be selected. A PAR criterion at the IFFT output or immedi-
ately after the DAC has limited physical motivation. Moving
the criterion into the line driver, the PAR at vS is lowered by
approximately 0.5 dB, as shown in Figure 4.

In Figure 5, the results of an active-set based algorithm
evaluated at vS are shown, now also with the unreduced sig-
nal. Also for this less complex algorithm, modelling the
line driver clearly improves the performance. PAR is about
0.5 dB lower at a symbol clip rate of 10−4 when a line driver
model is included in the algorithm. The influence of varia-
tions of the line driver transfer function due to the different
testloops is negligible.

5. CONCLUSION

A typical line driver structure was analysed and it was con-
cluded that an efficient PAR reduction algorithm should fo-

1941



8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
10−4

10−3

10−2

10−1

S
ym

bo
l c

lip
 ra

te
,P

ro
b(

P
A

R
(x

)>
10

lo
g(

(c
lip

le
ve

l/σ
)2 ))

Clip level/σ, dB

Algorithm using the full model
Algorithm using only tx−filter model
Algorithm using no model 

PAR evaluated at
critical sampling rate
before filtering 

PAR evaluated after
 transmit filters

PAR evaluated
at v

S
 

Figure 4: Clip probability as a function of clip level for a
signal that is PAR reduced using the three linear program-
ming based methods. The PAR was evaluated at three points
in the system; corresponding to x′[n], x[n] and vS(t) in Fig-
ure 1. Evaluating PAR at the critical sampling rate (the three
left-most curves), the best performance is achieved when us-
ing no filter model. However, when evaluating the physically
motivated signal vS(t), the reduction scheme using the full
model performs best.

cus on the signal at a specific node inside the line driver that
coincides neither with the input signal nor with the output
signal. A linear model of the line driver dynamics was de-
veloped. Measurements suggest that this model structure is
accurate enough for the purpose.

The tone reservation method has been modified to use
the new knowledge. Simulations show that improvements
of around 0.5 dB are possible. However, note that the gain
depends on the algorithm and the transmit filters. The key
point of this work is the shift of focus towards a physically
motivated PAR reduction criterion.
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