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ABSTRACT

This paper presents a new method for selecting key frames
from a given video sequence. It is characterized by the fact
that the entire process works in a wavelet transform domain.
At first, shot boundaries are detected to define initial key
frames. Secondly, specified but any number of key frames
are selected by clustering feature vectors. Its effectiveness is
evaluated in terms of precision rates and processing speeds.
The proposed method offers more satisfactory results and
works faster than the other existing methods.

1. INTRODUCTION

Key frames are the most common representation for the
abstraction of video sequences. They help a user under-
stand the video contents quickly by tiling key frames on a
display[1][2]. Key frame production is the fundamentals for
video content analysis[3] and querying techniques[4][5] that
use frame features such as colors, shapes and textures.

Various kinds of techniques for selecting key frames have
been proposed. Most of them selects initial key frames, and
then reduce the number of key frames by clustering feature
vectors. Typical strategies for selecting initial key frames are:

(a) Select all frames in a video sequence.
(b) Select regularly subsampled frames.
(c) Select a set of initial key frames according to the

result of shot boundary detection.

Method (a) involves a large number of frames in cluster-
ing. Thus, the dimension of the feature vector should be ad-
equately small to complete clustering in practical time. Such
a method is not suited for on-line video analysis[6], where
processing speed is crucial. Method (b) reduces the number
of frames simply. Redundant frames are removed by sub-
sampling to some extent, since neighboring frames are very
similar to each other. It can still leave redundant frames,
and can falsely remove important frames, because it does not
consider the frame contents at all. Method (c) selects initial
key frames by considering the frame contents at the expense
of computational cost. The proposed method is based on
Method (c). It successfully reduces the computational cost
by making efficient feature vectors in shot boundary detec-
tion, and they are kept to be used in clustering.

Lee et al.[7] uses RGB histograms as high dimensional
feature vectors that are extracted from initial key frames.

Those initial key frames are selected according to the result
of shot boundary detection. Singular value decomposition is
applied to those feature vectors before k-means clustering is
performed. This contributes to speed up the clustering.

Drew et al.[8] defines chromaticity signatures of initial
key frames by a few bases to form low dimensional feature
vectors. Those bases are prepared in advance according to
the result of the singular value decomposition. After adja-
cent clusters are merged, non adjacent clusters are merged.
Finally, those frames of which feature vectors are closest to
the cluster centers are selected as key frames. Both algo-
rithms require full-decoded frame pictures for extracting fea-
ture vectors.

The purpose of this study is to select key frames from
a given video sequence. First of all, initial key frames are
selected according to the result of shot boundary detection.
Secondly, any number of key frames are selected by cluster-
ing feature vectors of those initial key frames, and the num-
ber can be as many as desired. Our contribution in this work
is to conduct both shot boundary detection and clustering in
a wavelet transform domain.

A video sequence is assumed to be encoded by wavelet-
based coding techniques such as Motion-JPEG2000[9].
JPEG2000[10] is the next generation image and video cod-
ing standard. It offers a variety of scalabilities. Two-
dimensional wavelet coefficients are obtained by partial-
decoding of JPEG2000 bit streams. In spite of the transform
domain processing, no inverse wavelet transform is needed,
and this fact leads to less computational cost and memories.

2. KEY FRAME SELECTION

2.1 Initial Key Frames

When a video sequence is given, shot boundaries are to be
detected to find initial key frames. We employ a two-step
shot boundary detection algorithm[11], which works in a
wavelet transform domain. It captures gradual shot transi-
tions as well as abrupt shot transitions. It computes a distance
between video intervals to find a isolated interval. Then, it
computes a distance between frames to specify an exact lo-
cation of a shot boundary.

The two-step shot boundary detection algorithm takes
a single threshold value to control the sensitivity of shot
boundary detection. The threshold value should be as low as
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possible to avoid detection misses. Although a lower thresh-
old value may cause false positives, redundant frames are re-
moved in the process of clustering. So it hardly influence
the performance unless an extremely huge number of false
positives are produced.

After a given video sequence is divided into multiple
shots, a single frame that well represents the shot content is
selected for every shot. A frame adjacent to a shot boundary
is likely to belong to a shot transition. Indeed, gradual transi-
tions such as dissolves and fades consists of several frames.
Such a frame that involves different two shot contents is not
qualified for a representative frame. Hence we select an ini-
tial key frame that is located at the midpoint between one
shot boundary and the next shot boundary.

2.2 Feature Vectors of Key Frames

Feature vectors of initial key frames are constructed in the
process of shot boundary detection, where they are used to
compute distance between frames to find significant changes.
We intend to perform clustering with those feature vectors.
For this purpose, similarity distance and average feature vec-
tor are defined.

A feature vector F comprises the coarsest subband C
and the significance map[11] S of finer subbands of the two-
dimensional wavelet transform of a frame picture.

F = {C,S}. (1)

The coarsest subband consists of quantized wavelet coeffi-
cients. It is a large scale approximation of a frame. The
significance map is a binary map: significant coefficients in
finer subbands are encoded as unity and insignificant coeffi-
cients are encoded as zero. It implies the presence of sharp
changes such as edges and textures.

The distance between two feature vectors, Fm and Fn, is
defined after some preliminary definitions. The L1 distance
between two coarsest subbands, Cm and Cn, is described by

||Cm−Cn||L1 = ∑
i

∑
j
|cm(i, j)− cn(i, j)| , (2)

where c(i, j) denotes a quantized coefficient at (i, j) in the
coarsest subband. The Hamming distance between two sig-
nificance maps, Sm and Sn, is given by

||Sm−Sn||H = ∑
i

∑
j
{sm(i, j)⊕ sn(i, j)} , (3)

where s(i, j) denotes a binary at (i, j), and ⊕ represents ex-
clusive OR. Finally, the distance between two feature vec-
tors, Fm and Fn, is defined by the weighted sum of Eq. (2)
and Eq. (3), as follows.

||Fm−Fn||= w0||Cm−Cn||L1 +w1||Sm−Sn||H , (4)

where w0 and w1 are weights.
A cluster center is defined by the average of feature

vectors in the cluster. Given multiple feature vectors,

F1,F2, · · · ,Fn, average vector F̄ is defined as follows. Av-
erage coarsest subband C̄ of C1,C2, · · · ,Cn is calculated by

c̄(i, j) =
1
n

n

∑
k=1

ck(i, j), (5)

where c̄(i, j) denotes a coefficient at (i, j) in C̄ and ck(i, j)
denotes a coefficient at (i, j) in Ck. Average significance map
S̄ of S1,S2, · · · ,Sn is calculated by

S̄ = T (H), (6)

h(i, j) =
n

∑
k=1

sk(i, j), (7)

where h(i, j) denotes the number of significant coefficients
that are located at (i, j), and sk(i, j) is a binary at (i, j) in Sk.
A mapping T (·) shows a thresholding-after-sorting operation
as follows:

After every element h(i, j) in the argument H are
sorted by their values in descending order, the largest
N elements are quantized into one and the others are
quantized into zero. N is a given constant.

The resulting average coarsest subband and the significance
map compose the average feature vector.

F̄ = {C̄, S̄}. (8)

2.3 Clustering of Feature Vectors

In the k-means clustering algorithm, both the result of clus-
tering and the number of iterations depend on the initial
cluster centers. It is desirable that the initial cluster centers
spread over the feature space as widely as possible. Since ad-
jacent frames in a video sequence are similar to each other,
they are also likely to be located closely in the feature space.
Hence we regularly subsample the sequence of feature vec-
tors of initial key frames so that a specified number of feature
vectors are obtained. Those feature vectors are treated as the
initial cluster centers.

For a given set of feature vectors of initial key frames and
initial cluster centers, the k-means algorithm is performed as
follows.

STEP 1 For every feature vector, compute the dis-
tance between each cluster center and the feature
vector by Eq. (4). Then, associate every feature
vector with the closest cluster.

STEP 2 For every cluster, compute a new cluster
center according to Eq. (6) and Eq. (7).

STEP 3 For every cluster, compute the distance be-
tween the current cluster center and the previous
cluster center by Eq. (4). If all of the distances are
small enough, proceed to STEP 4. Otherwise, go
back to STEP 2.

STEP 4 For every cluster, find the feature vector that
is closest to the cluster center. This feature vector
is the representative feature vector of the cluster.

As a result of the four-step procedure, any desired number of
feature vectors are obtained. Those frames corresponding to
the obtained feature vectors are the final key frames.
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Figure 1: The Average of Distances Between Previous and
Current Cluster Centers Versus the Iteration Step.

3. EXPERIMENTAL RESULTS

As an experiment, we have tried to pick up a fixed number
of key frames. It is 25. The other key frame selection ex-
periment is to select half the number of initial key frames for
a test video sequence. Those initial key frames are selected
according to the result of shot boundary detection, and their
total number is equal to that of detected shots.

Figure 1 shows the average of distances between previ-
ous and current cluster centers at each iteration step. Every
distance is normalized so that the maximum distance takes
the value of one. News has 362 initial key frames. They
are reduced into 182 and 25 frames, respectively. Similarly,
Challenge at Glen Canyon has 234 initial key frames to be
reduced into 117 and 25 frames, respectively. The algorithm
has been iterated until the distance reaches zero. Smaller des-
tination number of key frames requires more iterations. As
seen in Fig.1, at most 10 iterations are sufficient.

If just a single key frame has been selected in a shot, and
if it belongs to a stable non-transient interval, it is considered
as a valid key frame. If two or more key frames are selected
from a single shot, the first key frame is considered as valid,
and the other key frames are considered as invalid. The total
number of valid key frames is equal to the number of shots in
a test video sequence. To evaluate the validity of selected key
frames, recall and precision rates are calculated as follows.
Recall is defined by the percentage of valid key frames that
are actually selected among all valid key frames. Precision
is defined by the percentage of valid key frames among all of
key frames that are actually selected.

Table 1 lists the recall and precision rates of initial key
frame selection for three test sequences. Because of detec-
tion misses and false positives, neigher recall nor precision
rates reach 100%. Color Harmony for Your Home has low
recall rates because the shot boundary detection is performed
with a relatively high threshold value.

Since the number of key frames is reduced as the result
of clustering, recall rates naturally drops. On the other hand,
owing to the reduction of invalid key frames by clustering,
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Figure 2: Elapsed Time Versus the Number of Initial Key
Frames.

precision rates will improve. We are not interested in the
recall rates of selected key frames. Table 2 lists the precision
rates of key frame selection.

Two pixel domain methods and the proposed wavelet do-
main method are compared. A method based on the L2 dis-
tance uses pixels themselves as the feature vector, and the
L2 distance as the distance. Histogram-based method uses
RGB histograms as the feature vector, and the absolute sum
of difference between corresponding histogram bins as the
distance. The proposed method uses the feature vector de-
fined by Eq. (1) and the distance defined by Eq. (4). All
those methods employ k-means as the clustering algorithm.
The method based on L2 distance outperforms the others in
our experiments.

Figure 2 shows the elapsed time in clustering versus the
number of initial key frames to be processed. Shot boundary
detection is performed with several different threshold values
to obtain initial key frames, and the number of key frames are
halved by clustering. It should be noted that the time needed
for the shot boundary detection is not included in the plots.

The method based on L2 distance is not suited for clus-
tering many key frames owing to the huge cost of a distance
calculation. The fact that the size of a feature vector is too
large to process on memory worsen the performance. The
processing time of the other two method grows slowly. Es-
pecially, the proposed method based on the significance map
is outstandingly fast. This is because the feature vectors are
obtained in the process of shot boundary detection.

4. CONCLUDING REMARKS

We have proposed a new method for selecting key frames
from a given video sequence. It works entirely in a wavelet
transform domain. Shot boundary detection is a preprocess-
ing, and is followed by the k-means clustering of feature vec-
tors of key frame candidates to find key frames.

Precision rates demonstrate that the proposed method of-
fers satisfactory results compared with other methods. More-
over, the proposed method dose not require inverse wavelet
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Table 1: Recall and Precision Rates of Initial Key Frame Selection.

Video Sequence The Number of Initial Key Frames Recall Precision
Challenge at Glen Canyon 234 93.8% 97.0%

Color Harmony for Your Home 93 40.0% 83.9%
News 362 91.8% 86.2%

Table 2: Precision Rates of Key Frame Selection.

(a) Results of Selecting Half the Number of Initial Key Frames

Video Sequence L2 Distance Histogram Proposed
Challenge at Glen Canyon 98.3% 98.3% 97.4%

Color Harmony for Your Home 95.7% 91.3% 91.3%
News 93.4% 93.4% 92.3%

(b) Results of Selecting 25 Key Frames

Video Sequence L2 Distance Histogram Proposed
Challenge at Glen Canyon 100.0% 96.0% 100.0%

Color Harmony for Your Home 96.0% 96.0% 92.0%
News 100.0% 96.0% 96.0%

transforms, and the feature vectors can have been generated
in the process of shot boundary detection. A significant re-
duction in computational cost and memory requirements is
gained by this combination of the transform-domain shot
boundary detection and key frame selection.
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