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ABSTRACT

We present in this paper a study on target recognition. The goal of
this work is to determine and compare different methods from the
pattern recognition domain in order to be able to recognize some
objects in an image. We suppose having detected by a segmenta-
tion process a candidate object appearing with an unknown scale
or rotation. To be able to recognize this object, we have first to
describe it by some features having the property to be invariant by
rotation, translation or scale. Second, we have to realize a super-
vised classification in order to compare this unknown object with
one from the knowledge database. We present some experimental
results for target recognition by comparing several features, classi-
fication methods and methodologies.

1. INTRODUCTION

The interpretation of images is still a complex problem and is
primordial in lots of applications (spatial, military, industrial and
medical). Since the beginning of the 80’s, lots of research works
have been achieved for the conception of vision systems in order
to recognize objects in an image [15]. An essential stage concerns
the strategy of object recognition because an object can appear at
different places in the image or at different orientations and scales
[21]. Several works have been dedicated to the definition of shape
descriptors invariant by rotation and scale [22].

In order to identify an unknown object, a supervised clas-
sification method is generally achieved by taking into account
these descriptors and a knowledge database. Object recognition
consists therefore in extracting from the image a set of char-
acteristic features. These features as well as the type of the
different objects to discriminate are provided then to a classifier,
in order to estimate the similarity of the unknown object with
another one in the knowledge database. This approach, com-
bining extraction of descriptors and discrimination, have been
already extensively studied. Typically, in applications of image
interpretation, classifiers such as neural networks [18], the nearest
neighbor method [17] or methods based on probabilistic models
[1] are often used. These methods also showed their efficiency on
character recognition [4] and have been for a long time the most
efficient methods. Support Vector Machines (SVM), based on
theoretical concepts developed by Vapnik [20] become currently
to maturity. Effectively, they proved to be very efficient for real
problems such as color image recognition [6], face recognition [16].

The objective of this communication is to evaluate some fea-
tures, supervised classification methods and methodologies for the
conception of a target recognition system. First of all, the perfor-
mance of some shape descriptors, invariant by rotation, translation
and scale are studied. Second, we compare different supervised

classification methods in order to define a generic method for target
recognition having these properties. We show the interest of this
combination in order to get a good property of invariance. We il-
lustrate this methodology by some experimental results for target
recognition, and more especially for planes. We also evaluated dif-
ferent methodologies: computation of the features on the contour
of the object, on the binary region or by using the gray-level of the
object.

2. PATTERN RECOGNITION

In order to recognize an object in an image, we need to make two
choices. The first one concerns the selection of a characteristic fea-
ture of each object. This feature must have in general some prop-
erties as invariance by rotation, scale or translation of the object.
It can be directly computed on the original image or afterwards a
segmentation result as for example a contour detection. The sec-
ond choice concerns the decision criteria for the object recognition
among one of its known objects in the knowledge database using
the previous features.

2.1 Features invariant by translation, rotation and scale

Lots of works have been achieved to solve the more general
problem of object recognition invariant by rotation and scale. There
exists several approaches. On the one hand, we find non-parametric
methods based on the projection of objects on an appropriated basis
of functions. These methods are extensively used in the field of
character recognition. Hu’s moments [14], Zernike’s moments [19]
or the Fourier-Mellin parameters [12] are such examples of non
parametric object features. On the other side, there exists methods
based on the use of neural networks for the object recognition
invariant under a transformation group [22]. The idea is to present
to the neural network during its training different orientations and
scales of the same object.

In this communication, we are going to evaluate the perfor-
mance of two non parametric features : Fourier-Mellin parameters
and Zernike’s moments. These features showed their efficiency
in previous studies [12]. We also evaluate the ability of SVM to
achieve an invariant object recognition under a transformation

group.
Translation invariance

In order to guarantee the translation invariance, these features
are computed after a preliminary stage on the image. We suppose
in this study, to process small images containing only one object.
It is then possible to compute the barycentre of the object. We
can bring back the object on the center of the region of interest by
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translation.
Rotation and scale invariance

e Zernike’s moments are calculated as following, from the ob-
ject g(p, B) expressed, after interpolation, in polar coordinates:
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scale. We used the ©Matlab implementation achieved in [5].

e Fourier-Mellin transform (FMT), that corresponds to the gen-
eralization of the Fourier transform with the group of positive simil-
itude is applied on the image in polar coordinates. More precisely,
we use the analytic extension of the FMT [12] given by:

va= [ / Pt e M glp,0) B a0 (3

withg € Z, v € R, and 0, € R},

This particular transformation avoids the divergence of the
Fourier-Mellin integral that appears in most of the practical situ-
ations. In [12], the following set of scale and rotation invariant fea-
tures has been proposed :

Ig(Vvq) :Mg(V7‘I)Kg(V7‘I) (4)
Ke(v.9) = [M(0,0)] ™% [Me(0,1)] 7 Me(0, )] (5)

2.2 Supervised classification

For target recognition, in this work, we will focus on the context
of supervised learning. Our training set {x;,y;},_,..,, Where each

x; € RY and y; € {1,--- ,N} in the case where we try to recognize
N different classes, consists in all the previous features and the
class of each object in the knowledge database. Our objective is to
determine a function f(x) that estimates dependencies between the
x; and the y; and that minimizes the risk of error classification for a
given point x not belonging to the training database. There exists
several supervised learning methods among which we can mention
distance minimization based algorithms, Bayesian methods [8] and
connexionnist methods [2].

We present in this communication some results of object recog-
nition by using these three kinds of classification methods.

2.2.1 Minimization distance

Every object class C; is represented by the mean vector of features
denoted E[a;]. An object with a vector of features a is affected to
the C; class if and only if:

i=arg mlm D(a,E[a;]) 6)
j=

where D corresponds to a distance (in this communication, it is the
Euclidean distance). This classifier corresponds to a maximal a pos-
teriori classifier in the case where each class can be modelled by a
Gaussian distribution probability and where the a priori probability
of each class is the same [9].

2.2.2 Fuzzy classifier based on the k nearest neighbors

This fuzzy classification method defined by Charroux et al. [7] pro-
vides the definition of a degree of belonging of an unknown object
without having any a priori knowledge on the distribution of obser-
vations. This method is particularly adapted when distributions of
the observations are unknown. This method is based on the Gre-
nier’s algorithm [7], whose principle is to calculate a potential vec-
tor where each component gives a degree of belonging to one of the
classes.

2.2.3  Support Vector Machines

For two classes problems, y;, € {—1,1}, the Support Vector Ma-
chines implement the following algorithm. First of all, the training
points x; are projected in a space  (of possibly infinite dimen-
sion) thanks to a function ®(-). Then, the goal is of to find in this
space, an optimal decision hyperplane, in the sense of a criterion
that we are going to define [20]. Note that for a same training set,
different transformations @®(-) lead to different decision function.
The transformation is achieved in an implicit manner thanks to a

kernel K(-,-) and the decision function is defined as :
£
f5) = mOx)+b=F aiyK(x,x)+b (]

i=1

with a € RVi. In SVMs, the optimality criterion to maximize is
the margin, that is the distance between the hyperplane and the near-
est point ®(x;) of the training set (see Figure 1 in the case where
®(-) is the identity function). The o} allowing to optimize this cri-
terion are defined by solving the following problem:

maxg, zle a;—
with constraints, ®)
0<a <C,

Zl la = 0 .
where C is a coefficient penalizing examples located in or beyond

the margin and providing to reach a compromise between their
numbers and the width of the margin.

1ot
3 Yij=10;0yK(x;, %))

Originally, SVMs have essentially been developed for the two
classes problems, however several approaches can be used for ex-
tending to multiclass problems [13]. The method we use in this
communication, is called one against one. Instead of learning N
decision functions, each class is here discriminated from another
one. Thus, N(Aéfl) decision functions are learned and each of them
makes a vote for the affectation of a new point x. The class of this
point x becomes then the majority class after the voting [11].

Learning Data and Margin

N\
\\

Figure 1: Illustration of the SVM discrimination for linearly sepa-
rable (on the left) and no separable data (on the right).
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3. EXPERIMENTAL RESULTS

In order to evaluate the efficiency of these different techniques, we
achieved different experiments for target recognition applications.
The first one consists in recognizing some views of planes at differ-
ent orientations and scales. The second experimentation consists to
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evaluate the performance of these techniques for the recognition of
3D planes from different 2D views.

3.1 Recognition of 2D objects

We used first of all, an image database composed of 10 planes [10]
(see figure 2). We generated a set of 360 images of size 65 X 65 pix-
els for each plane by successive rotations of one degree angle. Then,
for each orientation, two scales modification are applied (20% and
50%). We had for our experiments a database of 10800 images for
each plane.

Figure 2: 2 examples in the target database

At the beginning, each image has been segmented to obtain
the shape of the plane. Then, we calculate the Fourier-Mellin
parameters and Zernike’s moments for each picture. We have
thus one vector of 36 Zernike’s moments and 33 Fourier-Mellin
parameters for each plane.

Our methodology for the discrimination of the classes is the fol-
lowing : from the previous database, a training set and a test set have
been created. The training database is composed, for each class, of
a number of N examples distributed uniformly on the three scales
while the rest of database is used as test. Our experiments consist
in studying the performance of the different classifiers according to
the number of training examples.

Zemike's features computed from image Fourier-Melin features computed from image

8 %

Correct classification rate

Correct classification rate

E 0o =00 B o 00
Number of examples in the leaming database Number of examples in the learning database

(a) Zernike (b) Fourier-Mellin

Figure 3: Performance of classifiers according to the number of
examples for each class with features computed on the image

Zemike's features computed from contour Fourier-Meliin features computed from contour

Correct classification rate
Correct classification rate

E o e
Number of examples in the learing database

B 0
Number of examples in the learning database

(a) Zernike (b) Fourier-Mellin

Figure 4: Performance of classifiers according to the number of
examples for each class with features computed on the contour

A multiclass SVM based on the one-against-one with a linear
kernel was used first. The penalization parameter C of badly

classified training points has been fixed to 1000. This value
permits to guarantee that the number of errors during the training
phase remains low. The best parametrization of the fuzzy classifier
is achieved for a high value of k, we used in our experiments k£ = 13.

Recognition of binary objects

First of all, we used a binary segmentation result of this
database for the training and recognition steps. An unknown object
is represented by its contour or a binary region. Figures 3 and 4
present the classification results of targets by using the two types of
invariants and the three supervised classification methods described
previously. One can note on the one hand, the efficiency of the
SVM for the recognition compared to the two other methods.

On the other hand, Zernike’s moments give in this case a better
recognition rate (increase of 4 to 5%) compared to Fourier-Mellin
parameters. By using Zernike’s moments, we reach an excellent
recognition rate equal to 99% with only 15 examples for each plane
(with different orientations and scales) in the training phase.

As we could wait for it (in the measure where the quantity of
information is less important), the classification results are worst
when we use only the contour of planes (decrease in performance
of 5 % for the recognition rate). It shows the interest to exploit all
the information in an image compared to the use of a segmentation
result.

3.2 Recognition of 3D objects

For the recognition of 3D planes from 2D views, the training
database is composed of 648 different views for each plane (see
in Figure 5 some binary segmentation results).

N - )

Figure 5: Different views of a MIG29 plane for the training phase

As previously, the image database is separated in a training set
and a test set. We are going to use the same features and the three
previous supervised classification methods. For this problem, the
SVM used is based on a polynomial kernel of order 2 (we have
therefore a non-linear decision border) and for the same reasons
that previously, the penalization coefficient of C is still fixed to
1000. For the fuzzy classification algorithm, we chose & = 11 (for
computation time reasons). The Figure 6 presents the average rate
of correct classification obtained on 20 tests. Each curve is function
of the number of examples, in the training database. We remark
this time that the two types of features have an equivalent behavior
and we reach a correct classification rate equal to 95% with 500
examples.

Contribution of the combination

In order to identify the contribution of the combination between
the features and the SVM, we achieved one experimentation of
recognition on the same database by using as a characteristic of
an object, the image itself. In this case, each target is represented
by a vector of size 65 x 65 corresponding to the value grey-levels
of each pixel. Classification results are not better than 20% of
good classification rate putting in evidence the interest of the
combination of these two approaches instead using only the SVM.
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Figure 6: Recognition of 3D objects

Recognition of grey-levels objects

We also tried to recognize the same targets by using the grey-
levels of each plane. We present in the figure 7 the classification
results by using the Fourrier-Mellin parameters (Zernike’s moments
give similar results) with the 3 classification methods. We obtained
a good increase of the performance of recognition of order 5%.

3D Recognition performance

Correct Classification Rate

50 0 Ed w00 W
Number of leaming examples per class

Figure 7: Recognition of 3D objects by using grey-levels targets

4. CONCLUSIONS AND PERSPECTIVES

We studied in this paper different methods for target recognition.
We combined invariant features and one supervised classification
method. We put in evidence on the one hand, the efficiency of
Zernike’s moments and Fourier-Mellin parameters. On the other
hand, the performance of the SVM has been highlighted with
regard to a fuzzy classifier using the K nearest neighbors and the
minimization of a distance. We obtained on a significant image
database excellent recognition results of 2D planes and good results
from 2D views of 3D planes.

Perspectives of this study concerns the quantification of the im-
pact of a background all around the object and screening problems
for the target recognition.
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