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ABSTRACT

In this paper a new algorithm to digitally restore vintage
photographic prints affected by the ”foxing” defect is pro-
posed. The algorithm is composed of several automatic
and consecutive steps where detection of damaged areas
is coupled with removal methods. The restoration algo-
rithms are based on an inpainting technique and on an ad-
ditive/multiplicative model. The first one replaces the lost
data; the second one fixes the defective area searching for op-
timal parameters around the damaged area. The obtained
results show that the foxing spots are completely removed
without producing significant artifacts.

1. INTRODUCTION

Old photographic prints should be preserved with care to
avoid irreversible damages. Experts suggest to maintain as
long as possible the good quality of a print by handling it
with care and saving it under optimal humidity conditions.
However, there are many damaged pictures that need to be
restored. As expressed in [1] the classical physical restora-
tion is extremely expensive and automated virtual restora-
tion is hence required to obtain quick, simple and effective
results. In this paper we propose a technique to restore pho-
tographic prints affected by foxing. The term ”foxing” was
used for the first time in the 18th Century to indicate the
scattered reddish-brown (the color of a fox) spots on the sur-
face of paper in old books [2, 3, 4]. The same technical word
was introduced in photography to refer to a similar chemical
damage on the prints. Foxing is characterized by a dark-
brown center and an area where the color is smoothed. In
the center all the original information is covered by the spot,
and hence it is considered as lacking. The area around the
center, on the contrary, can include residual original informa-
tion that should be enhanced. Fig. 1 reports two examples
of ”foxed” images.

The causes of foxing are not completely understood;
probably it depends on joined fungal activity and metal-
induced degradation. The paper used in oldest prints has
microorganisms that can remain latent for decades await-
ing conditions appropriate for growth. Moreover, airborne
spores can attach the paper, creating colonies of foxing. An-
other element that seems to accelerate foxing is the presence
of iron in the paper. Despite the statistics showing that foxed
areas have higher proportion of acid and iron than clean ones,
what role iron has in creating or accelerating foxing has to be
demonstrated yet. However, if the relative humidity is be-
low 50% and we use modern paper without iron, the foxing
is strongly reduced.

On photographic paper, the effects of foxing may be
chemically reduced to a reasonable extent by use of a reduc-
ing agent such as sodium borohydride or calcium hypochlo-
rite [2]. These physical restoration procedures are very ex-
pensive, complex, and are performed only by skilled person-
nel. Often this is not justified by prints value. In this case
it can be helpful to perform a digital automated restoration
to reduce the cost and the processing time.

In this paper we suggest an algorithm to restore foxing
stains. It alternates the detection phases with the restoration
ones. Both the detection and the restoration methods are
automatic and do not need user assistance. The detection
is based on the color properties of foxing. The restoration
method uses inpainting if there is no residual information,
while it exploits an additive/multiplicative model elsewhere.

Inpainting algorithms [5, 6, 7, 8], solve the problem of
disocclusion (i.e. the recovery of hidden parts of objects in
a digital image). They connect T-junctions at the occlud-
ing boundaries by propagating both the gradient direction
and gray-values of the image in a band surrounding the hole
to be filled-in. Isophote (region with the same level lines)
directions are obtained by computing at each pixel along
the inpainting contour a gradient vector and by rotating
the resulting vector by 90 degrees. This method tries to
propagate the information while preserving the edges. Af-
ter few iterations of the inpainting process, the algorithm
performs an anisotropic diffusion run to preserve boundaries
across the inpainted region. On the other hand, an addi-
tive/multiplicative model [9] reconstructs the low-spatial fre-
quency components of the image via an approximation of the
uncorrupted image, and the high-spatial frequency compo-
nents by means of a suitable model.

To our best knowledge, no reference can be found in the
open literature to automated methods dealing with the prob-
lem of foxing.

The rest of the paper is organized as follows: Section
IT describes the proposed algorithm, and Section III shows
some experimental results. A Conclusions section ends the

paper.

2. THE PROPOSED ALGORITHM

First of all the photographic prints are acquired with a scan-
ner or other acquisition systems to obtain a high-resolution
digitized version of the image. This image I is the input
of our algorithm. It starts with a detection phase that de-
termines where the foxing is located. Then an inpainting
algorithm restores the detected areas. A second detection,
obtained extending the previous one by searching for similar
points, is performed before the last step that fixes the defec-
tive areas, while preserving the original information where
available. All these steps are automatic.

Detection

The method tries to find where the foxing spots are located.
In the Introduction we described this damage as a set of
reddish-brown spots. Vintage photographic prints are usu-
ally gray or sepia. In the first case the C, chrominance ma-
trix related to red is null, while in the second one it presents
a histogram whose peak is in the center. Chemical alter-
ations however change this situation and, in particular, in
presence of foxing artifacts they yield C, matrices with the
typical histogram shown in Fig. 2. The histogram presents
a tail on the right formed by a set of (usually small) bins
having almost uniform amplitude, and the peak is in the left
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Figure 1: (a) and (b) two examples of foxing

portion of the histogram. The bins on the right tail represent
all the points damaged by foxing.

The detection procedure searches for all the connected
image parts represented by this tail. If I is an RGB image,
to perform the detection we change the RG B color space into
Y CyC,. Then the normalized histogram with 256 bins of C.
is computed. To find all the bins representing the damaged
pixels we start from the right of the histogram, and we mark
as foxing all the bins whose difference between their height
and the height of the previous bin is less than a fixed value
Thl. The center of the last bin marked as foxing gives the
value a that is used to perform a thresholding over the matrix
C, to find Fox. Fox is a matrix where the coordinate of
foxed pixels are represented as a 0 value. More precisely:

.. [0 Cr(i,j)>a
Fox(i, j) _{ 1 elsewhere

where a is the above determined value. This detection
step could extract isolated points; they do not represent rele-
vant damaged areas, and hence are expunged using a simple
median filter. The black regions in Fig. 3(a) are the foxed
areas as labeled by the detection phase.
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Figure 2: (a) Histogram of C.; (b) A detail of the histogram
in (a)

Restoration: Inpainting

All the pixels whose value in Fox is 0 are modified with
an inpainting-like procedure. This is applied to the darker
brown pixels in the foxing spots, where there is no residual
information. In this step we propagate inside the foxed areas
the boundary colors. Each pixel in the border of the detected
foxing is assigned the average of the colors close to the pixel
but outside the foxing. More precisely we set €2 as the area
to be inpainted:

Q={1(i,J)

If we call N;; the 3 x 3 neighborhood of I(3, j), then the
boundary pixels of I(i,7) € Q are:

;= {I(p,q)| (I(p,q) & Q) A(I(p,q) € Nij)}.

We remark that 0€;; contains pixels that do not belong to
Q but are near I(i,7) that is in Q.

The inpainting procedure yielding I’ can be described as
follows:

While Q £ 0
For each pizel I(i,j) € Q with 0Q;; # 0
I'(i,j) = average of pixels € 9Q;;
Q =\ {I(i,4)}
Q5 = 0Qu; U{I(4, )}
end For
end While

The new image I’ presents more homogeneous foxing spots.
Fig. 3(b) shows the image in Fig. 1(a) after inpainting. It
can be seen that the foxing stains are still visible even if their

with Fox(i,j) = 0}
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saturation is reduced. This happens because in this step we
have replaced the flawed regions using their outlines which
are partially affected by foxing.

Figure 3: (a) Position of foxing defects; (b) Image in Fig.
1(a) after Step 1. (c¢) New detection of the foxed points

Enlarged Detection

In this stage we extend the previous detection step by finding
all the pixels where the original information is only partially
affected by foxing. They are characterized by a lighter col-
oring than the center of the foxing and their position is near
the reddish-brown spot. Therefore we search them starting
from the previous detection. If the color of a pixel near the
foxing spot is close to the color of the pixels in the inpainted
region, then that pixel is labeled as foxed. This procedure
can be described in the following pseudo-code:

Set Q= {I'(i,j) with Fox(i,j) =0}

Set I'" =T
Repeat
Q' =Q

For I'"(p,q) € 080; with I'"(i,j) € Q
If |I//(p7 q) - III(17J)| <Th2

Fox(p,q) =0
Q=0u{l"(p,q)}
I"(p,q) = I"(i, 5)
end If
end For
Until Q' # Q
Where Th2 is a suitable threshold. After this step Fox is the
updated detection map. Fig 3(c) shows the new detection
result in our example.

Final restoration: additive/multiplicative model

The image I’, produced by the previous step, has been
treated with the inpainting technique, but some foxing spots
are still visible; the Fox map contains the positions of the
foxed pixels. Now we eliminate the foxing, taking into ac-
count the residual information in the detected regions. To
this purpose we propose an additive-multiplicative model ap-
plied to each foxed area. Similarly to [9], we automatically
extract the model parameters examining a suitable region
around the foxing spot. If we denote with J the uncorrupted
portion of the image I’, and with Q* a single foxing spot, we
can write our model as follows:

I'(Q)=axJ@Q)+8 (1)

where o and [ are the parameters to be estimated. We
should be able to obtain an estimaton of the error-free image
by inverting Eq. 1. Therefore, the problem is reduced to
determine suitable values for the o and 3 parameters. To
this purpose, denoting with var[.] and E[.] respectively the
variance and the mean in [.], and using Eq. 1, we can state
that

var[l' ()] = o * var[J ()]
E[I'(Q")] = ax E[J(Q)] + 8 (2)

However, the variance and the average of the uncorrupted

image J are unknown. We denote with Q* an area around
the foxing Q% with width W. To avoid using pixels that
are too close to the spot, and hence are unreliable, Q* is
automatically determined as a strip around the blotch shifted
by S pixels away from the contour. This shift ensures that
an erroneous detection of the border will not compromise
the accuracy of the final result. In order to solve Eq. 2, we
approximate J(2*) with I'(Q*). This assumption permits
to estimate the values of o and (3:

B = B[I'(Q")] 3)
Inverting Eq. 1 using the estimated parameters o and B, it
is possible to compute the restored value for each pixel of
the foxing regions. Formally:

J(Q7) = (I'() - B)/a. (4)

where J is the restored image. After this process the area
inside the foxing spot is perfectly restored and it is similar
to the rest of the image. However, the contour of the stain
could still be apparent. This behaviour is caused by the fact
that, during the detection step, some damaged pixels are not
labeled as belonging to a foxing region. To avoid this artifact
we use a linear interpolation across the border of the foxing
spot. To compute this interpolation, the luminance gradient
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is evaluated for each pixel p in the contour. Then, an array of
2L + 1 pixels centred on p is considered. This array contains
L pixels belonging to the foxing region and L outside the
spot chosen along the gradient direction indicated in p. If
we denote with Pstert the first pixel of the array and with
P.,q the last one, a linear interpolation is performed between
these two values according to the distance between the pixels.

If d(P;) = #Pf:dd is the normalized distance of each

pixel in the array from the Pstqr+ position, the new intensity
values are:

J(P;) = d(P;) % J(Pstare) + (1 — d(P)) % J(Pena) ~ (5)

It has to be noticed that the new values in the vector depend
only on the intensities in Psiqr: and Pepng, and the original
values are not considered. Due to the fact that the gradient
orientation can be very different even for neighboring pix-
els, it could happen that there are some un-processed pixels.
Therefore, we search all the unchanged pixels in a border
strip of width 2L+ 1, and we assign a gray level value to each
pixel corresponding to the average of its already interpolated
neighbors in a 3 x 3 mask. All the operations described in
this subsection are repeated for each foxing spot Q*. The
output of this iteration is the final restored image.

3. EXPERIMENTAL RESULTS

This section shows some results obtained applying the al-
gorithm to old photographic prints. We remark that the
method does not need any selection by the user and does
not process the entire image if it is not necessary. The al-
gorithm parameters have been set experimentally as follows:
the threshold T'hl for the detection in the normalized his-
togram is set equal to 0.1; Th2 is 2; the distance S between
the foxing and the uncorrupted area is chosen equal to 7; the

width W of the Q2 is 10; and L=3 in Step3.

Fig. 4 reports some results obtained applying the pro-
posed algorithm. It should be noted that the proposed al-
gorithm has been tested with uncompressed and compressed
images, in Tiff and Jpeg format respectively. In all cases the
algorithm provided good results. The goodness of the results
cannot be estimated quantitatively due to the fact that the
images are originally affected by foxing: it is not possible to
compare the performances via MSE or PSNR.

4. CONCLUSIONS

In this paper an algorithm to remove foxing defects from
vintage photographic prints has been proposed. The method
works preserving the residual information where available
and replacing irreversible damaged area with data obtained
considering the area around the defect.

The algorithm works without any user intervention for
both the detection and the restoration. Our experiments
show the efficacy of the method.
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