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ABSTRACT
In this article, we introduce a novel blind space

time processing allowing the transmission of dig-
ital communication over a frequency-selective fad-
ing channel. We show that it is relevant to use trans-
mit diversity in such a context. Our scheme uses 2
transmit antennae and K (K � 2) received anten-
nae. We call our method Turbo deflation because it
is based on results from the field of blind sources
separation of convolutive mixture (i.e. deflation ap-
proach [1]) and from principle of iterative turbo de-
coding [2].

Furthermore it is a blind approach which means
that the receiver does not need any training se-
quence. Our novel method could for instance be
used for underwater communications where blind
equalization scheme have already been introduced
with really convincing performances [3].

1. INTRODUCTION

Let us consider the complex envelope y�t� of the
continuous-time signal transmitted by a communi-
cation system using two transmit antennae and K
received antennae. Denote by y p the contribution
in y of the signal emitted by antenna number p.
Thus y can be seen as a linear mixture of 2 sources
y � y1 � y2. In the telecommunication framework,
yp may be a linear process modeled as : y p�t� �
∑m sp�m�hp�t�mT � where �sp�m��m is an i.i.d. se-
quence of discrete Q-PSK symbols, T is the symbol
period and hp denotes the impulse response of the
channel relative to source p, i.e. a filter stemming
from the cascade of a band-limited pulse-shaping
filter and multi-path transmission effects. At the
receiver side, y is observed through an array of K
sensors and thus y�t� and hp�t� are vector-valued.
We assume that the symbols emitted by antenna 2
are an interleaved version of the one emitted by an-
tenna 1. �1�n� � �s1�nN�� � � � �s1�nN � N � 1��T

and �2�n� � �s2�nN�� � � � �s2�nN � N � 1��T have
the following relation :

�2�n� � ΠN�1�n� (1)

where ΠN is a N �N pseudo-random interleaver.
We also assume that the channel is stationary over
the duration NT .

We address here the following blind prob-
lem that consists in restoring the symbol sequence

�1�n�. Note that neither training sequences, nor
prior knowledge about the filters are available at the
receiver side. In fact, this problem has obvious con-
nections with the framework of blind source sepa-
ration. We remind that the standard requirements
in this field are: the sources are mutually indepen-
dent, centered, ergodic and stationary. In our con-
text, S1�n� and S2�n� do not strictly obey the inde-
pendence assumption. However for large enough
interleavers, we can assume mutual independence
between the sources.

In order to extract the sources, we use the defla-
tion approach [1] that is based on the minimization
of a contrast function [4]. We recall that a contrast
function is a function of the statistics of the received
signal and its minimization allows the extraction of
one source. Section 2.1 reviews the deflation pro-
cedure in details.

By re-itering the deflation procedure and ex-
ploiting the relation (1) between the sources, we
can use the information obtained from the estimate
of the first extracted source as a priori information
for the second one. This allows us to improve the
estimate of the sequence of symbols �1�n�.

2. THE TURBO DEFLATION

2.1 Description of the iterative procedure

First of all, we describe the deflation procedure for
two sources which is the key-stone of our reception
scheme. This procedure can be splitted into two
stages:
� Stage 1 :

1. The observation y is sampled at rate 1�T and
passed through a digital K � 1 vector-filter
G1�z�. The coefficients of G1�z� are adapted by
minimization of a contrast function. The min-
imum is reached iif z1�n� the output of G1�z�
equals the symbols of one of the source up to a
delay and a complex multiplicative factor.

2. By an adaptive subtraction procedure, we com-
pute from z1�n� the contribution on each captor
of the source currently estimated and we sub-
tract this contribution from the observed signal.
More precisely, we search t1�z� of size K � 1
that minimizes

� ��y�n�� �t1�z��z1�n��
2��
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t1�z� is an estimate of the channel impulse
response corresponding to the first estimated
source. And y��n� � y�n�� �t1�z��z1�n� is a sig-
nal of dimension K corresponding to the contri-
bution of source 2.

� Stage 2 : We iterate stage 1 but on the signal
y��n� in order to adapt a filter G2�z�, to estimate
the second source and the corresponding chan-
nel impulse response.

The existence of filters Gk�z�, k � 1�2 allowing the
extraction of the sources of the mixture is based on
results presented in [1].

As the two sources send the same symbols but
interleaved, we compute from the first source an ex-
trinsic information that is used as a priori informa-
tion for the estimate of the second source. Follow-
ing the turbo principle and by iterating this proce-
dure, the extrinsic information computed from the
second source can be used as a priori information
for the estimate of the first extracted source at the
next iteration. The first iteration of our turbo defla-
tion procedure consists in the above depicted defla-
tion procedure with the computation of the respec-
tive extrinsic information. At the end of this first
iteration we obtain the signal e�1��n� (the upper-
script �m� stands for iteration number m) : e�1��n� �

y�n�� �t�1�1 �z��z�1�1 �n�� �t�1�2 �z��z�1�2 �n� that can be
considered as a residual signal containing the part
of the source signal not exploited during the first it-
eration. In order to start the next iteration and to
re-extract the first source, we add to e�1��n� the esti-
mated contribution of source 1 at the previous iter-
ation (i.e. �t �1�1 �z��z�1�1 �n� ). Once the symbols of the
source are estimated (using the a priori information
of the previous iteration, see section 2.2 for details)
we estimate �t�2�1 �z�� and subtract the contribution of
this source and add the previous estimate of source
number two (as shown by figure 1) before starting
stage 2 of iteration 2.

By such a procedure, we expect an improve-
ment of the source and channel (t �m�

1 �z� and t�m�
2 �z�)

estimates. This will be confirmed by simulations in
section 3.

2.2 Estimation of the symbols sequence

At the output of G�m�
k �z�, we obtain an estimate up

to a multiplicative factor and a delay of the symbols
of one of the sources. In order to estimate the se-
quence of symbols, we need the following assump-
tions: (i) The delay and the multiplicative factor are
known by the receiver. (ii) The receiver knows the
source currently estimated. Without restriction let
us assume that the first source extracted is the one
sending the sequence �1�n�. (iii) Let z�m�

k �n� for

k � 1�2 be the output of G�m�
k �z� at iteration m. We

assume that:

z�m�
k �n� � sk�n��bk�m�n� (2)
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Figure 1: Iteration m of the Turbo Deflation

where bk�m�n� is white Gaussian noise with zero
mean and unknown variance ν 2

k�m

Assumption (i) and (ii) are not too restrictive,
we discuss this point in section 2.3. The third as-
sumption is also realistic. Indeed, if we know the
delay and the multiplicative factor, we can compen-
sate their effect. Furthermore as Gk�z� inverses the
channel of the source number k, it is pertinent to as-
sume that z�m�

k �n� satisfies equation (2). Note that
the variance ν 2

k�m of the noise is empirically esti-
mated by :

ν̂2
k�m �

1
N

N

∑
n�1

�
z�m�

k �n�� ŝ�m�
k �n�

�2
� (3)

where ŝ�m�
k �n� is the hard decision of sk�n� obtained

from z�m�
k �n�. ν̂k�m measures the reliability of the

symbols extraction.
We use the principle of turbo decoding to esti-

mate the sequence of symbols. Indeed at each it-
eration, we have two different estimations of the
same information : one obtained at the output of
G1�z� and the other at the output of G2�z�. We now
describe in details the estimation of �1�n� that we
call ”SOMAP” in figure 1 for soft mapping. We
consider Q-PSK symbols in this paper. Therefore
we treat separately their real and imaginary part.
The problem now consists in estimating a vector
�1�n� � ����1�n������1�n���T of size 2N�1 with
value in ��1��1�, where ��x� (respectively ��x�
) denotes the real (respectively imaginary) part of
x. Let us consider the iteration m. The estimate
�̂

�m�
1 �n� of�1�n� is obtained by (for details please
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refer to [5]):

�̂
�m�
1 �n� � � ��1 �n��L�m�

1 ��1�n���

� tanh

�
L�m�

1 ��1�n���
�m�
1 �n��

2

�

where L�m�
1 ��1�n�� is the information a priori of

U1�n� and L�m�
1 ��1�n���

�m�
1 �n�� is the a posteriori

Log-likelihood ratio of U1�n�. From z�m�
1 �n�, we es-

timate L�m�
1 ��1�n���

�m�
1 �n�� as follows :

L�m�
1 ��1�n���

�m�
1 �n�� � L�m�

1 ��1�n����
�m�
1 �n�

(4)
where ��m�

1 �n� is the extrinsic information esti-
mate of the sequence U1�n�. By equation (2),

z�m�
1 �n� may be viewed as the output of an equiv-

alent AWGN channel. Thus we have :

�
�m�
1 �n� � �

2��z�m�
1 �n��

ν̂2
1�m

�
2��z�m�

1 �n��

ν̂2
1�m

�T � (5)

L�m�
1 ��1�n�� is the estimate at iteration m of the

a priori information of �1�n�. At stage 2 of the

previous iteration, we computed ��m�1�
2 �n� from

z�m�
2 �n�. As S2�n� is assumed independent of S1�n�,

we can use the extrinsic information ��m�1�
2 �n� of

source 2 as a priori information for source 1. Using
equation (1) we have :

L�m�
1 ��1�n�� �

�
Π�1

N 0N

0N Π�1
N

�
�

�m�1�
2 �n�

where 0N is a N�N matrix of zeros.
At the next stage, we procide the same way for

the estimation of S2�n�.

2.3 The identification problem. . .

We assumed in the previous section that z1�n� (re-
spectively z2�n�) is an estimate of s1�n� (respec-
tively s2�n�). In fact z1�n� is an estimate of λ1sk�n�
n1� where k � �1�2� and z2�n� is an estimate of
λ2sl�n� n2� where l 	� k and l � �1�2�. In order
to apply the proposed method, we need to estimate
blindly λ1, λ2, k, l and n2 � n1. The estimate of
λ1�λ2 is out of the scope of this paper but there ex-
ists methods to do it [6].

We present an algorithm that estimates blindly,
k, l and n2�n1. This algorithm uses the relation (1)
linking s1�n� and s2�n�. Let’s take l � ��L� � � � �L�,
for each l we estimate the intercorrelation coeffi-
cient γ̂2�l� between the sequence z1�n� and the ΠN-
interleaved version of the delayed sequence z2�n�
l� : γ̂2�l� � 1

N�1�n��ΠN�2�n � l� where �i�n� �
�zi�n�� � � � �zi�n � N � 1��T and �� stands for trans-
posed and conjugated . In the same way, we esti-
mate the intercorrelation coefficient γ̂1�l� between
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Figure 2: SER vs SNR : Iterative deflation - 1st Source

the sequence z1�n� and the Π�1
N -interleaved ver-

sion of the delayed sequence z2�n � l� : γ̂1�l� �
1
N�1�n��Π�1

N �2�n � l�. It is easily seen that we
have: �k�n2 �n1� � ArgMaxi�l �γ̂i�l��.

3. SIMULATION RESULTS

In this section, we consider a mixture of 2 Q-PSK
sources. The considered contrast function is the
Godard criterion and G�m�

k �z� is obtained as follows

G�m�
k �z� � ArgMin 1

N ∑N�1
n�0

�
�z�m�

k �n��2�1
�2

. The

filter G has a fixed number of taps set to 8 and
the minimization is done by a Newton algorithm.
We now specify the propagation model. The ex-
cess bandwidth factors are all equal to 0�2. The
propagation channel results from the superposition
of 3 paths: the delays and directions of arrival and
directions of departure are uniformly chosen in re-
spectively �0;3T � and �0;2π�. The attenuation of the
path follows a Rayleigh distribution. The distance
between the transmitted (respectively received) an-
tennae is λ �2 where λ is the wave length of the sig-
nal. The number of sensors is set to K � 3. Finally,
duration of y is set to 1000T . All the following
results have been averaged over 500 trials, where
the channel and the symbols sequence are randomly
generated for each new trial. The method is tested
in a noisy context. The noise is assumed Gaussian,
complex, temporally and spatially white with zero
mean.

In order to illustrate the behaviour of our
method, we first consider that the sources are mu-
tually independent: information obtained from the
extraction of source 1 can not be used for the es-
timation of source 2. Performance is measured by
the residual Symbol Error Rate (SER) at the output
of the iterative deflation procedure.

Figure 2 (respectively 3 ) represents the SER for
the first (respectively second) extracted source at it-
eration 1, 3, 5 and 8.

We observe that the estimation of the second
source is worst than the one of the first source.
Furthermore the SER increases with the number of
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Figure 3: SER vs SNR : Iterative deflation - 2nd Source

iteration , this can be explained by the fact that
in a noisy context, the deflation procedure intro-
duces error propagation. Indeed at each deflation
stage the subtraction of the contribution of the ex-
tracted source from the observation increases the
noise level. Of course this affects on the perfor-
mance of our method.

We now consider the case where the second
source transmits an interleaved version of the sym-
bols emitted by the first antenna. A pseudo-random
interleaver of size N � 1000 symbols is used. In or-
der to evaluate the performance of our method, we
measure symbols error rates (SER) computed from
the sequence estimated at iteration 1,3, 5 and 8.

Results are presented in figure 4. The more
itereations, the smaller the SER. Although the itera-
tive deflation procedure also introduces error propa-
gation, here the exploitation of transmit diversity al-
lows us to improve the estimation of symbols from
one iteration to another.

As we did not find in the litterature any blind
transmit diversity method over frequency-selective
fading channel and as we need a point of compar-
ison, we compare our method with the following
scenario: one single antenna transmitting the se-
quence �1�n� over the same propagation channel
(equivalent to a SIMO model) but with a power
equal to the sum of powers used on each transmit
antenna. Results are also presented in figure 4 and
demonstrate that our method outperforms the per-
formance obtained by a single antenna using twice
as much power. Thus it is relevant to use trans-
mit diversity in a blind communication scheme.
Note that it is not obvious that our method per-
formes better. Just keep in mind that the chan-
nel is a frequency-selective fading one and is un-
known at the receiver. Furthermore our method has
to deal with a convolutive mixture of two sources
and needs to separate the sources before estimating
the symbols sequence.

4. CONCLUSION

We describe in this paper a blind space time pro-
cessing scheme that allows to transmit digital com-
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Figure 4: SER versus SNR: Turbo deflation

munication over a frequency-selective fading chan-
nel. Futhermore we provide simulations to illus-
trate the behaviour of our method and we show that
it is relevant to consider transmit diversity for blind
communications over a frequency-selective fading
channel. For instance a potential application could
be acoustic transmissions. Note that the method can
be easely extended for more than two transmit an-
tennae. At this point no codes have been used but
this is currently under investigation, obviously this
will give better performence and we hope a better
turbo effect.
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