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ABSTRACT

Recently, a novel Maximum Likelihood Sequence Estimation
(MLSE) equalizer was reported, that avoids the explicit estimation
of the channel impulse response. Instead, the centers of the clus-
ters which are formed by the received samples are estimated, in a
computationally efficient manner, that exploits the channel linear-
ity and the symmetries underlying the transmitted signal constel-
lation. This paper investigates the relationship of the center esti-
mation (CE) part of the proposed equalizer with the Least Squares
(LS) method, demonstrating that it can attain LS performance at a
substantially lower computational cost. The importance of CE is
thus confirmed, as a methodology that combines high performance,
simplicity and low computational cost, as required in a practical
equalization task. The results of this paper provide also an alterna-
tive, algebraic viewpoint on the CE method, while at the same time
leading to a new interpretation of the LS, in terms of averaging for
cluster center estimation.

1. INTRODUCTION

One of the major problems encountered in the receiver design of any
communication system is that of combatting Inter-Symbol Interfer-
ence (ISI), arising due to limited channel bandwidth or multipath
propagation. The part of the receiver used to mitigate ISI is the
equalizer, and the related literature is very rich (see, e.g., [12]).

The equalizers based on the Maximum Likelihood Sequence
Estimation (MLSE) scheme [12] are implemented via the Viterbi al-
gorithm (VA) and they require the channel impulse response (CIR)
to be known. For this purpose, one may resort to any appropriate
identification method [4]. Once the CIR has been identified, its in-
ner products (convolution) with all possible channel input vectors
(associated with the states) are computed and subsequently used in
the metric computations for the VA.

Recently, a novel MLSE equalizer was proposed, that circum-
vents the problem of explicit CIR parametric modelling, leading to
substantial computational savings [6]-[10]. It belongs to the class of
the so-called Clustering-Based Sequence Equalizers (CBSE) (e.g.,
[3]), since it is based on the idea that the set of all possible (noise-
less) channel output values, needed at the Viterbi stage, are simply
the centers of the clusters formed by the received observations at
the receiver front end and can thus be estimated from the noisy ob-
servations via a clustering approach. In contrast to earlier CBSE
methods, however, which appeal to clustering in a high-dimensional
space defined by successive observations,! the novel algorithm op-
erates in a one-dimensional space [6]. Furthermore, the algorithm
uses an efficient cluster center estimation (CE) technique, that ex-
ploits the structural symmetries underlying the generation mecha-
nism of the clusters of the received samples to considerably reduce
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I'This is also the case in symbol-by-symbol equalizers that are based on
clustering; see, e.g., [1, 11].

the number of cluster centers required to be estimated directly. It
turns out that the centers of all the M’ clusters, formed by the noisy
output of a channel of length L with an input alphabet of size M, can
be determined on the basis of estimates of only L properly selected
ones. This has a twofold advantage. First, since only L clusters need
to be learned, a considerably shorter sequence suffices for training,
compared to previously proposed CBSE receivers. It is constructed
so as to generate a cyclic repetition of only L input vectors, cor-
responding to the selected L clusters. Second, the computational
complexity is drastically reduced.

It has been observed [9, 10] that the proposed CE technique
exhibits a similar to Least Squares (LS) performance, despite its
low computational complexity, which is even lower than that of the
LMS-based method commonly employed in standard MLSE equal-
izers [9]. These computational savings are due to the fact that the
new setting allows for an efficient exploitation of the symmetries
in the input constellation. This paper investigates this issue. It is
shown that CE yields the same estimates for the cluster centers with
those that would result from computing them as convolution sums
using the channel estimate provided by the LS method, trained on
the same data with CE. The computational requirements of the two
methods are compared, clearly demonstrating the computational ad-
vantage of CE over the classical LS method.

2. DESCRIPTION OF THE COMMUNICATION SYSTEM

A block diagram of the adopted discrete-time model for the com-
munication system is depicted in Fig. 1. A sequence of independent
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Figure 1: Communication system model

and identically distributed (i.i.d.) symbols, x;, drawn from a finite
alphabet, S, of size M, is transmitted through the channel, modelled
as a finite impulse response filter of length L and transfer function
H(z). The input signal constellation is assumed symmetric. That
is, M is even and S contains both the symbols a;, i = 1,2,...,M/2,
and their negatives. This includes both real (e.g., M-PAM [10])
and complex (e.g., M-QAM [9]) constellations. For the sake of
generality, the results will be presented for the complex case. In
the examples, we will assume 2-PAM (BPSK) and 4-QAM (QPSK)
signaling. The received sequence is given by:

L—-1

k=Y hixiitne=h"x 4 m =gy ()
=

where the superscripts * and ' denote complex conjugation and
Hermitian transposition, respectively, & = [k, 1, ..., hp_1]7 is
the vector of the (generally complex) L taps of the CIR, x, =
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Figure 2: Plot of the clusters formed by the received samples when
BPSK symbols are transmitted, the transfer function of the chan-
nel is H(z) = 1— 0.5z"! +0.2z72 and white Gaussian noise of
SNR=20 dB is present. Stars denote cluster centers, while gray
circles correspond to noisy channel output samples.
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Figure 3: @’s denote cluster centers which correspond to the 3-tap
channel H(z) = 1—0.5z~! +0.2z72 with BPSK input. The centers
of the clusters that are due only to the first (and the second) tap are
shown as o’s (x’s).

[Xky Xk—1, ---» Xt—z+1]7 is the input data vector, j is the noiseless
channel output, and n;, is additive, zero-mean white noise, uncorre-
lated with y;. The noisy observations, y, are fed to the sequence
equalizer whose aim is to provide estimates, Xg,X¢_1,...,Xk—L+1,
of the input symbol sequence.

3. CENTER ESTIMATION (CE) METHOD

As it is well known [12], the MLSE equalizer has first to estimate
the CIR and then apply the VA (or one of its variants) to estimate
the symbol sequence x;, based on metric computations of the form
Diy = |yk — hx|?, with x ranging over the set of all possible L-
tuples of input symbols (associated with the states). However, it can
be readily seen that what one really needs, instead, are the noiseless
observations 7, = A x, since Dy = vk — 7 |%. Hence, the CIR es-
timation step can be bypassed [6]. The possible Values that j; can
take are simply the points (centers) around which the received sam-
ples (observations) yy, are clustered, due to the presence of the noise.
Fig. 2 shows the received samples for a 3-tap channel with transfer
function H(z) = 1 — 0.5z~' +0.2z~2 and BPSK input, when white
Gaussian noise, corresponding to an SNR of 20 dB, is also present.
The notation iy, v, | »,_,] denotes the cluster center which is asso-

ciated with the transmitted symbol sequence x = [x;,x;_1,x;_2] at
time k. The spread of the clusters depends on the power of the
noise. The number of clusters, as well as their position on the real
line depend on the number and the values of the CIR taps.

In total, there are M~ cluster centers that have to be estimated.
This number evaluates to 23 = 8 for the example of Fig. 2. However,
the information contained in the cluster centers is highly redundant.
This is due to the intrinsic dependency between the locations of the
cluster centers, caused by the linearity of the channel and the sym-
metry of the symbol alphabet. Fig. 3 depicts the centers of the clus-
ters formed by the output samples of the first tap (o’s), the two first
taps (x’s) and the 3 taps (’s) of the channel of Fig. 2. The pair of

the centers due to the first tap is symmetrically located around zero.
The 4 centers due to the first and the second tap can be grouped
in two pairs with each of them being symmetrically located around
the centers associated with the first tap. This rationale carries on
for the centers generated by all 3 taps of the channel. In a way, the
locations of the observations follow a hierarchical pattern of sym-
metries, depending on the channel length.

It has been shown [8, 10] that this structure in the cluster center
constellation, exhibited in the above examples, implies that only L
(out of the M™) properly selected cluster centers need to be directly
estimated. The rest of them (M” — L) can then be easily determined
on the basis of the estimates of these L centers. To precisely de-
scribe the estimation procedure, let

&' =xh,, x€S8 )
be the contribution of the mth tap of the CIR to the generation of a
cluster center. Using this notation, the term jy in (1) can be rewritten

as
L—1
Pitetetyotirn] = D em (€)
m=0
where Viy v | .x_,.,] is the cluster center associated with the
transmitted L-tuple [xg,Xg—1,.-., Xg—r+1]- Furthermore, it is easy
to realize that, for each tap 4,,, only one of the M possible values of
¢ needs to be computed; all the others can be obtained via a simple

multiplication:
x
== “)
x

For BPSK signaling, i.e., S = {—1, 1}, the above translates to a sim-
ple sign change (" = fc’]”) whereas in the QPSK case 11/2 ro-

2.m m
tatlonsareneeded e.g., . L= ]clﬂ,c 1=y =

S g = jei ;- g Therefore, the computation of all the cluster cen-
ters (via eq. (3)) requires the estimation of only L tap contributions
7, which, as it will be seen shortly, are in turn computed via the
estimates of only L properly selected centers.

A method for the appropriate selection of the centers that
have to be directly estimated was proposed in [7]-[10]. First
choose any one of the M” centers, say Flxo x> and call it ba-
sic center, Cpasic, and the corresponding L-tuple basic sequence,
Xpasic = [x07x17---7x1‘71}-2 Then the L centers to be directly es-
timated are chosen as those which correspond to the basic se-
quence with a sign change in one of its entries: Co = V[ ;... x|
Cl =Vxg,x1ri]o - CL=1 =Py 11,0, —x,]- These L centers can
be estimated via any supervised clustering algorithm [13]. For ex-

ample, a simple averaging of the observations, ygm, belonging to the
corresponding cluster, m, was proposed in [7]-[10]:

R 1 New-l c
C m 5
m NC,,, kgo Y ®)

where N, denotes the number of observations associated with G,,.

Once estimates, Cy,, for Cy,,, m =0, 1,. ..
Chasic 18 determined as [7, 8]:

,L—1 have been computed,

ZLIC
L—-2

The computation of the tap contributions is then straightforward [7,
8]:

Coasic = , L>2 (©6)

o Chasic =G
C}rfn:M7 m=0,1,...
m 2

Using (6) in (7) an equivalent formula for & results:

om o Zi#méi
= 2(L-2)

20L-2) "

®)

2The index in x; here does not represent time.
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For the example of Fig. 3, one can set, e.g., x,,;. =[1, 1, 1]. Then it
suffices to estimate the L = 3 centers Co = y[—1,1,1), C1 = J[1,-1,1]
and C; =y 1, 1]. The tap contributions are then determined as ¢} =
%7 é} = %7 and c"% = %.3 Clearly, the above procedure
does not apply when L = 2. A different approach must be taken in
this case [5]. In the rest of the paper it will be assumed that L > 2.
The above method for estimating the M” cluster centers, based
on an averaging procedure of directly estimating only L of them,
will be referred to here simply as the CE algorithm. 1f the employed
training sequence is to be as short and effective as possible, it has
to be so chosen as to visit the selected clusters as many times as
possible and equally often. It is readily seen that, if only the L-
tuples corresponding to the centers G, are to appear in the training
sequence, the symbols in the basic sequence should coincide, i.e.,

Xg=X] ==X, =X &)

Such a choice of training sequence can be the periodic repetition of
the sequence (for L > 2) [x,x,x,...,x,—x] [8]. This gives rise to L
——
L-1
possible input data vectors which appear at the rows of the matrix:

-1 1

X' =xx] =x L , (10)
o1 e 1
4. EQUIVALENCE WITH LEAST SQUARES (LS)
ESTIMATION
4.1 CE as a Channel Identification Method
More generally, with the basic sequence x,,. = [X0,X1,-..,X1—1]

(with L > 2), the L X L matrix keeping the training L-tuples at its
rows is of the form:

—X0 X1 Xr—1
X —X X7—
Jr 0 1 L—1
X0 X1 —XL—-1
T 1:
= X] dlag(xo,xl,...,xL,l) (1])
Let, moreover, j,m=0,1,...,L—1, denote the center correspond-

ing to the mth row of X7 (It was denoted as C,, above.). That is:

7=[# 7

Fo =2 (12)
It will be shown in this section that the center estimates that result
from the CE algorithm, using the training data (11), are LS optimal.
In other words, the result is the same as if one had first resorted to
the LS method, with the data (11), to identify the CIR and then use
it to estimate all possible (noise-free) channel outputs, j, via con-
volutions. For the purposes of this analysis, and in order to have a
common basis of comparison of the CE and LS methods, we shall
view CE as a method of channel identification. This is indeed possi-
ble, in view of the relation between the tap contributions (estimated
by CE) and the channel taps, namely, ¢f' = xuhy, (cf. (2)). If
e=[ e,

is the vector of tap contribution estimates, an estimate for the CIR
vector can be computed as

h= |diag(xy ' ,x o xp L ))é (13)

3When L = 3, only two of the three centers are used for the estimation of
each tap contribution, leading to a sub-optimal performance. An appropriate
modification for this case is elaborated in [5].

Eq. (12) implies that the estimated centers will be related to the
estimated taps via the relation

T

o st ] S xTR (14)

which, in view of (11) and (13), can be written asj_7 = X]TQ or equiv-
alently (X is nonsingular)

e=x"y 15)
Noting that
_ L3 1 A
2(1sz) _Z(LL—_23) N 2(L1—2)
XfT _ 2(1‘.—2) 2(.L—2) . 2(1‘.—2) (16)
i i ’ -3
2(L-2) 2(L-2) T2

it is seen that eq. (8) in the CE method is, in fact, a computationally
efficient manner of implementing the matrix-vector multiplication
in (15).

In order to be allowed to carry over the results of the compari-
son of the CE and LS methods from the CIR identification context
to that of cluster center estimation (ultimately needed in the VA),
we must also note that the mean-squared error (MSE) for the es-
timation of the centers is directly related to that for the estimation
of the channel taps. Indeed, taking into account the special struc-
ture of the alphabet S, namely S = {a;;i=1,2,...,M/2}U{—a;;i=
1,2,...,M/2}, it can be shown [5] that the average MSE for the es-
timation of a center is given by E[var(y)] = Ps an;%) var(h,,), where
Ps= 1L 5™ |a;|? is the input signal power.

4.2 Proof of Equivalence with the LS Method

Let yo,y1,.-.,yn—1 be the received samples (observations) when
the rows of X7 are periodically used as input data vectors, with y;
resulting from row AmodL. Write the number of observations as
N = ngL +ny where 0 < n; < L. This implies that centers y"*, m =
0,1,...,n1 — 1, have used one more sample for their estimation than
the rest (which have used ng samples each). Since 3" is determined
as the average of those observations that belong to the mth cluster,
it can be written as:

j\7m: ”0}1'] ZZO:()ynL+m7 OSWS”I—I
s am,  m <m<L-1
or, equivalently, in matrix-vector form:
1
N . F1im
F= g 7 S noo y=ay (17
1o
where [, denotes the nth-order identity matrix,
= ot 0 (18)
= 1 ,
0 alL—n
and y = [yo, 31, -+, yn—1]T. The estimate for the tap vector, call it
ﬁCE, results then via egs. (15), (13), and (11):
PP o= x (19)
= X Hay (20)
The corresponding LS problem can be formulated as
min|ly — 27 7h[|3 1)
5 2
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Table 1: Computational requirements of CE and LS methods (Real
data).

| Method | Add/Sub | Mult/Div |
CE N+L—1 2L+1
LS LIN=1)+L(L—1) | LN+L?

where the training data matrix 27 is built as

2T=1Xx X X X! (22)
N e

no

with X;,, denoting the first #n; columns of X. The solution to (21) is
([4,2)):

W=zah oy =0; (23)
where ® = 2" 2 is the sampled data autocorrelation matrix and
z = Zy* denotes the cross-correlation vector. Noting that

(no + 1)1, 0

d=X
{ 0 nolL—n,

]XH:XJ_IXH7 (24)

eq. (23) becomes

ﬁLS = XfoXflt%”f
= X‘Hf{ L L - I 16' ] y*
= X "y, (25)

which is recognized as the estimate resulting from the CE method
(cf. (20)).

It is of interest to note that the above proof applies to any L x L
matrix X7 with linearly independent rows, not necessarily of the
form of (11).* Tt thus provides an alternative viewpoint on the LS
method through its relationship with averaging for cluster estima-
tion.

5. COMPUTATIONAL COMPLEXITY CONSIDERATIONS

We have shown that the CE method yields the LS solution when a
periodic repetition of L properly selected input vectors is used for
training. In fact, CE attains LS performance at a computational cost
substantially lower than that of direct LS estimation. A summary
of the operations counts of the two methods for a channel of length
L, a real symmetric input constellation of size M, and a sample set
of size N is provided in Table 1. The practical case of (9) is con-
sidered here. Only the operations involved in calculating the tap
contributions for a symbol x are included; the rest of the computa-
tion is the same in both methods. Just double these counts to find
the complexity (in terms of real operations) for the complex case.
The normal procedure followed in the LS method is to first
compute the vector z and then multiply it with the inverse of the
matrix @. Noting that the training sequence consists of a sym-
bol x and its negative, some simplifications to this procedure are
possible and are adopted here. Indeed, if 2] is defined as in (22)
but with X replaced by the corresponding matrix, Xi, of +1’s, then

(his)* = (212 0) 1% Z1y and for the vector of tap contribu-

x?
tions &, = [¢%,éL,...,657 11T the required computations are implied
by the relation ¢, = (272]7)~! 2y = (Dl_]g]. The counts given
for the LS method in the above table do not include the computa-
tions required to compute and invert @, (qJ]_1 can be assumed to

“It is only for matrices of this form, however, that eq. (19) corresponds
to the CE method.

Table 2: Computational requirements of CE and LS methods (Real
data, L =5, N = 30).

| Method | Add/Sub | Mult/Div
CE 34 11
LS 165 175

have been pre-computed [2]°). Even so, the computational burden
for the LS method raises to O(NL), for N > L, as compared to only
O(N) for the CE approach. It must be emphasized that the num-
ber of multiplications/divisions required by CE is independent of
the data size. Table 2 gives the operations counts required by the
two methods for the realistic case of L =5 taps and N = 30 obser-
vations, with real input data. The computational advantage of the
CE method over LS is apparent, particularly in the required multi-
plications/divisions.
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