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ABSTRACT

This work addresses the soundtrack indexing of multimedia
documents. We present a speech/music classification sys-
tem based on three original features: entropy modulation,
stationary segment duration and number of segments. They
were merged by basic score maximisation with the classical
4 Hertz modulation energy. We validate this fusion approach
with the use of the probability theory and the evidence the-
ory. The system is tested on radio corpora. Systems are sim-
ple, robust and could be improved on every corpus without
training or adaptation.

1. INTRODUCTION

Methods of indexing in audio (and video) are mainly man-
ual: a human operator must read, listen to and/or look at the
numerical document in order to select required information.
This task of indexing must be automated because the vol-
ume of data increases enormously and the treatment of sev-
eral requests becomes extremely tiresome. To index an au-
dio document, keywords or melodies are semi-automatically
extracted, speakers are detected... Nevertheless all these de-
tection systems presuppose the extraction of elementary and
homogeneous acoustic components.

Several methods of speech/music discrimination were
described in the literature. We observe two tendencies. On
one hand, the musician community has given more impor-
tance to features which increase a binary discrimination [11].
For example, the zero crossing rate and the spectral cen-
troid are used to separate voiced speech from noisy sounds
[12], [14] whereas the variation of the spectrum magnitude
(the spectral "Flux") attempts to detect harmonic continu-
ity [13]. On the other hand the automatic speech processing
community has focused on cepstral features [6]. Three con-
current classification frameworks are usually investigated:
Gaussian Mixture Models, k-nearest-neighbors [4] and Hid-
den Markov Models.

In a previous paper, we have studied a basic fusion (by
score maximisation) of these methods [10]. In this paper, we
decide to use the probability theory and the evidence theory
in order to validate our approach of fusion.

This paper is divided into three parts: a presentation of
our classification system, a description of our fusion methods
and test experiments performed on radio documents.

2. CLASSIFICATION SYSTEM

Two detection subsystems have been previously studied: one
for speech detection and another for music detection (Figure
1).

� For the speech detection subsystem, we have used entropy
modulation and 4 Hz modulation energy.

� For the music detection subsystem, an automatic segmen-
tation has given the number of segments by time unit and
segment duration average.

In fact, we have two classifications for each second of
input signal: the speech/non-speech one and the music/non-
music one. Of course, at the end, we can merge them.
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Figure 1: Speech/Music classification system.

2.1 Speech detection subsystem
� 4 Hz modulation energy

Speech signal has a characteristic energy modulation peak
around the 4 Hz syllabic rate [7].In order to model this
property, the classical procedure is applied: the signal is
segmented in 16 ms frames. Mel Frequency Spectrum
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Coefficients are extracted and energy is computed in 40
perceptual channels. This energy is then filtered with a FIR
band pass filter, centered on 4 Hz. Energy is summed for all
channels, and normalized by the mean energy on the frame.
The modulation is obtained by computing the variance of
filtered energy in dB on one second of signal. Speech carries
more modulation energy than music.

� Entropy modulation
Music appears to be more “ordered” than speech consider-
ing observations of both signals and spectrograms. To mea-
sure this “disorder”, we evaluate a feature based on signal
entropy:

H � k

∑
i � 1

� pilog2 pi

with pi=probability of event i

The signal is segmented in 16 ms frames, the entropy is
computed on every frame. This measure is used to compute
the entropy modulation on one second of signal. Entropy
modulation is higher for speech than for music.

2.2 Music detection subsystem

The segmentation is provided by the "Forward-Backward Di-
vergence algorithm”[3] which is based on a statistical study
of the acoustic signal. Assuming that the speech signal is de-
scribed by a string of quasi stationary units, each one is char-
acterized by an auto regressive Gaussian model. The method
consists in performing a detection of changes in the auto re-
gressive parameters. The use of an a priori segmentation
partially removes redundancy for long sounds, and a segment
analysis is relevant to locate coarse features. This approach
have given interesting results in automatic speech recogni-
tion: experiments have shown that segmental duration carry
pertinent information [2].

Figure 2a - Segmentation on about 1 second of speech.

Figure 2b - Segmentation on about 1 second of music.

� Number of segments
The duration feature is the consequence of the applica-
tion of the segmentation algorithm described above. The
speech signal is composed of alternate periods of tran-
sient and steady parts (steady parts are mainly vowels).
Meanwhile, music is more constant, that is to say the
number of changes (segments) will be greater for speech
(Figure 2a) than for music (Figure 2b). To estimate this
feature, we compute the number of segments on one
second of signal.

� Segment duration
Segments are generally longer for music (Figure 2b) than

for speech (Figure 2a). We use the segment duration as
feature. We decide to model it by a Gaussian Inverse law.
The pdf is given by:

p
�
g � ��� λ

2πg3 � e � λ 	 g � µ 
 2
2µ2g , g � 0

with µ = mean value of g and µ3

λ variance of g.

2.3 Reference system

For each subsystem, a statistical model is estimated. We
make the decision regarding to the maximum likelihood cri-
terion and we called it “reference system”. Then, we propose
to validate this approach by using other fusion methods like
probability theory and evidence theory.

3. DATA FUSION

In the scientist community, data fusion becomes a very at-
tractive domain [5]. In fact, sources are not always reli-
able and we need to compensate ones’ weakness with others.
Probability theory and evidence theory provide some solu-
tions to address the problem of merging information coming
from several sources.

3.1 Probability theory

Fusion methods were first considered in the Bayesian ap-
proach. Effectively, in probability theory, the Bayesian the-
orem is used to estimate the probability of a future event oc-
currence given the probability events in the past. The deci-
sion is made with the a posteriori maximum criterion. This
theory has the disadvantage to require a perfect knowledge
about the event probability, particularly for a priori proba-
bility.

To avoid this problem of ignorance, we can rely on mea-
sures of confidence, based on two information: expert and
class [9]. Let α be the expert confidence measure and β be
the class confidence measure. The expert manages to dis-
criminate Class C from Non-Class NC with a rate αe which
is the one’s complement from the error rate.

Here, experts are the four parameters of the classifica-
tion system (entropy modulation, 4hz modulation energy,
number of segments and segment duration). From each
expert, we can extract a confusion matrix Class/Non-Class
(Speech/Non-Speech or Music/Non-Music). β becomes:

βeC � P
�
y � C �C �

P
�
y � C �C ��
 P

�
y � NC �C �

βeNC � P
�
y � NC �NC �

P
�
y � C �NC ��
 P

�
y � NC �NC �

where y is the observation extracted every second.

Bayesian strategy gives us a decision function for each
expert:

s �e � y � � min ��� � 1 � βNC � � Pr
�
y �C �

P
�
y ������ � 1 � βC � � Pr

�
y �NC �

P
�
y � �����

Finally, we produce the decision with the expert e maxi-
mizing:

αe � � 1 � s �e � y ��� �
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3.2 Evidence theory

As we have seen, solutions in combining multiple classifiers
are numerous but each of them has weaknesses. Most treat
imprecision, but uncertainty and reliability are ignored.
Evidence theory allows to use uncertain data [8] and [1].

Let θ be a set of N classes: θ � � C1 � � � � � CN � .
Here, θ � � S � M � SM � N � with S for speech, M for music

and N for noise.

From this confusion set, we can define another set:

2θ � � A �A � θ �
2θ � � /0 � � S � � � M � � � SM � � � N � � � S � M � � � � � � θ � �

This set is used as a referential to evaluate the truth
of a proposition. Supposing an information coming from
an expert (or any other source), it expresses an opinion
over elements in 2θ that is to say over single hypothesis
or disjunctions of those. Opinions over the system can be
illustrated with belief degrees on hypothesis. These degrees
are described with a belief function mθ : 2θ ��� 0 � 1 � with:

1. mθ
�
/0 � � 0

2. ∑
A � θ

mθ
�
A � � 1

Such a description permits to distribute our knowledge on
the 2θ set and mθ

�
A � is the part of the belief degree on propo-

sition A. Every expert provides its own function which is
combined with others using the Dempster-Shafer’s rule [8].
The result gives a final mass distribution to access reliable
information.

We have four experts (parameters of the classification
system) providing four belief functions (m1,...,m4). To
obtain me

�
θ � , which represents ignorance mass, we have to

consider expert’s mistake. For other hypothesis, every expert
gives an opinion resulting from a priori probabilities.

For example, expert 1 (4 Hz modulation energy):

m1

�
y 	 � S � SM � � � m1

�
S � SM � � P

�
y � Speech �

and m1

�
M � N � � P

�
y �Non � Speech � .

So, we have four mass distributions to combine with
Dempster-Shafer’s rule. We make a decision with the max-
imum of plausibility, which cares about all hypothesis dis-
junctions’ weights:

Plθ
�
A � � ∑

B 
 A �� /0

mθ
�
B �

Thus, belief theory makes it possible to manage com-
bined hypothesis and to reduce a priori’s part in the descrip-
tion’s problem.

4. EXPERIMENTS

4.1 Corpus

Our corpus corresponds to a database made of records from
RFI (Radio France Internationale, CNRS’ RAIVES project).
It is composed of songs, reports, sports, adverts, news, in-
terviews... sampled at 16 kHz. It contains long periods of

speech, music, ’mixed’ zones and noise. Speech is recorded
in different conditions (phone call, outdoor), with different
speakers and many languages. We have also different kind
of music like pop songs, opera, orchestral music...

4.2 Results

The classification system (cf. 2) gives results by decompos-
ing Speech/Non-Speech from Music/Non-Music. To eval-
uate our model, we separate experts 1 and 2 (Speech/Non-
Speech, Table 1) from experts 3 and 4 (Music/Non-Music,
Table 2) and we compare the results with those from the clas-
sification system.

Table 1: Speech/Non-Speech classification

Speech/Non-Speech sub-system Accuracy
4 Hz Modulation energy 87.3 %
Entropy modulation 87.5 %
Reference system (max) 90.5 %
Probability theory 90.7 %
Evidence theory 90.9 %

Table 2: Music/Non-Music classification

Music/Non-Music sub-system Accuracy
Number of segments 86.4 %
Segments duration 78.1 %
Reference system (max) 89 %
Probability theory 84.8 %
Evidence theory 86.9 %

The reference system is our previous work [10] where we
have used a basic fusion (by score maximisation).

Theory of probabilities offers a model which gives sim-
ilar results to the reference system. By the way, this theory
is at the base of this system so this model confirms previ-
ous results. Confidence measures provide improvement in
Speech/Non-Speech discrimination.

We explain the score in Music/Non-Music with the ex-
pert confidence rate of "segment duration" which is not very
high (α4

� 53%). Thus, this parameter is not relevant in final
fusion, only the parameter "number of segments" matters.

For evidence theory, using mass distributions improve re-
sults. We explain the score in Music/Non-Music like previ-
ous theory.

5. DISCUSSION

We describe in this paper four features based on different
properties of the signal. All those features considered sepa-
rately are relevant in a speech/music classification task, and
the correct classification rates vary from 76 to 84 %. Then,
we propose fusion theories that permit to raise the correct
classification rate up to 90 %.

Probability theory allows using our a priori knowledge
about the system to merge information with confidence mea-
sures. This theory produces satisfying results to discriminate
Speech from Non-Speech. So, it validates this subsystem’s
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model. For Music/Non-Music classification, we obtain lower
scores than with the parameter "number of segment" alone.
That shows how "segment duration" is not the best support
to "number of segment" in this discrimination.

Evidence theory gives the best results in Speech/Non-
Speech classification. For Music/Non-Music’s ones, we can
improve them by transforming our distribution masses’ cal-
culation for the two segmentation features. Thus, this theory
appears to be the best solution to formalize the classification
system.

Those two theories fit with a shape recognition problem
in sound indexation. The problem’s modelization can be re-
fined by using other techniques for combining and calcu-
lating confidence measures and distribution masses. Those
fusion’s techniques may be relevant for other domains like
language identification where we can, for example, merge
models describing different sources: acoustic, phonotactic
and prosodic information. Many errors in automatic classi-
fication are due to a bad discrimination in Speech/Singing
Voice. We hope those theories will give results in this sound
indexation domain.
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