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ABSTRACT

During the last Eusipco conference [1] we proposed a new
class of algorithm, called Constant Norm Algorithm (CNA),
which contains the well-known CMA. From this class, two
new cost functions well designed for QAM modulation, were
derived. The first, named CQA for Constant sQuare Algo-
rithm, is better adapted for QAM than the classical CMA.
It results in a lower algorithm’s noise without an increase of
complexity. This algorithm was derived thanks to the infinite
norm which was intuitively better adapted for square map-
ping modulation than the norm 2 of the CMA. In the same pe-
riod [4] we proposed a geometrical derivation for computing
the Excess Mean Square Error for Bussgang algorithm. Then
in respect to this derivation, we prove in this paper that the
optimal norm which minimizes the EMSE for QAM modu-
lation is not the infinite norm (even it gives a lower EMSE
than the norm 2) but it is the norm 6.

1. INTRODUCTION

Nowadays, due to socio-economic and technological rea-
sons, the demand for wireless access has been increasing
rapidly. It is estimated that this trend will continue in the
coming years. Over the last few years there has been an
explosion in the number of standards, of networks, of ser-
vices on these networks and finally an exponential increase
in bit-rate. This situation explains, partly, why optimized use
of different systems and standards as well as efficient spec-
trum utilization have become vital issues. To the above ends,
many different ways are currently studied in the telecommu-
nications area. Among them, we are specifically interested in
this paper on modulation schemes which exhibit high spec-
trum efficiency, such as QAM modulation. This type of map-
ping is more sensitive to the channel perturbations and there-
fore efficient equalization schemes are needed. To improve
the overall throughput of a transmission system, we should
avoid the use of training period, in other words, we should
perform at the receiver side blind equalization. There were
a lot of work on blind equalization schemes. In this paper
we start from the Constant Norm Algorithm family already
presented in the last Eusipco conference [1]. We shown that
the infinite norm belonging to this family offers better perfor-
mances than the classical norm 2 (the CMA). We are going
further, in this paper, showing that, in respect to the Excess
Mean Square Error, the optimal norm for 16-QAM modula-
tion is the norm 6.

The paper is organized as follows. In Section 2 the prob-
lem is formulated. In Section 3 the Constant Norm Algo-

rithm (CNA) family is described then we analyze the conver-
gence in section 4 thanks to the computation of the EMSE.
In addition we derived EMSE equations for the CNA case
(then implicitly for both CMA and CQA cases). Then in sec-
tion 6 some simulation results are provided. These results
concern EMSE for CNA family algorithms. Finally the work
is concluded in section 7.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Before proceeding any further let us define the notation used
throughout the paper. The vectors are denoted by bold up-
per case letter and the superscript H stands for Hermitian
transpose. The notation 〈X,Y〉 represents the dot product
of the two vectors X and Y. The conjugate of a complex
z = Rez +

√
−1 Imz is denoted by z, and its norm by ‖z‖

where z is considered as a point in the real plane. Finally, the
expectation of the random variable X is denoted by EX .

We are studying Bussgang algorithms, which obey the
classical stochastic gradient algorithm. We can derive the
general formula (with the notations of figure 1):

Wk+1 = Wk−µ φ(zk)Xk (1)

These techniques attempt to find the source data an (sup-
posedly i.i.d.), in the most efficient way according to a cer-
tain criterion (like MMSE, ZF,. . . ), from an observation xn,
which is the result of the convolution of an by a finite im-
pulse response channel H and disturbed by a white additive
Gaussian noise bn. In the framework of blind equalization,
also called unsupervised or self-learning, the only available
a priori knowledge is the statistics of the data an.

H(z) + Wn(z)
an xn zn

bn

Figure 1: Blind equalization scheme

The resolution to this problem can be made by filtering
the received data through a filter W . This filter is optimized
in order to minimize a certain cost function J that depends
only on the output zn. This minimization is made, for ex-
ample, by a stochastic gradient algorithm. This kind of al-
gorithms contains the well known CMA. Furthermore, we
derived a generalization of the algorithm better suited for

29



other modulations than constant modulus ones, like QAM.
These algorithms produce a smaller algorithm’s noise and
the gain could reach in some particular conditions 6 dB in
Mean Square Error (MSE).

With a view to simplifying the notations, the time in-
dexes will often be left out. The aim, therefore, is to find
a cost function J such as the perfect equalizer Wopt is the
global minimum. We will now limit ourselves to cost func-
tions which verify:{

Wopt = argminW J (z)
J (z) = EJ(z)

(2)

where E indicates expectation. From this cost function, it is
possible to develop a stochastic gradient algorithm:{

Wn+1 = Wn−µφ(z)Xn,

φ(z) = ∂J(z)
∂ z .

(3)

The next section 3 presents a class of cost functions
called CNA (Constant Norm Algorithm) and derives from
there some particular cases included the CMA in 3.2.1, the
CQA (Constant sQuare Algorithm) in 3.2.2 designed for the
QAM, and the p-norm CNA. Thanks to a derivation in sec-
tions 4 and 5 of the Excess Mean Square Error (EMSE)
which measures the algorithm’s noise, we optimize the p-
norm algorithmsin respect to this criterion in section 6.

3. COST FUNCTIONS

3.1 Constant Norm Algorithm

We defined a new algorithm family. We called it the Con-
stant Norm Algorithm (CNA). This denomination is due to
the replacement of the modulus of the CMA by n(·) which is
a norm on R2. Then we can write a new cost function as

J (z) =
1
pq

E
∣∣np(z)−R

∣∣q
. (4)

We will show further that the classical CMA cost func-
tion is a particular case of (4). In order to respect (2), we can
derive the constant R as presented in [1]. Actually, R is fixed
in such a way that the perfect equalizer, in the sense of the
ZF criterion, is at least a local minimum of J in a noise-
less environment. In the particular case of the CNAp,2, this
constant is given by

R =
En2p(a)
Enp(a)

, (5)

where we recognize the case of the CMAp,2 but where the
modulus is changed into the general norm.

3.2 Particular cases of CNA’s cost functions

3.2.1 Constant Modulus Algorithm

The CMAp,q has been developed by Godard [2] for constant
modulus modulations (like the PSK). This is one of the most
widely studied algorithms. The cost function can be written
as

J (z) =
1
pq

E
∣∣|z|p−R

∣∣q
. (6)

The CMAp,q is then a particular case of the CNA by taking
the modulus as the norm n(·).

With our previous simplification, the algorithm takes the
simple form

Wn+1 = Wn−µ
(
|z|2−R

)
zXn; (7)

where the constant R is chosen so that the inverse of the chan-
nel is a minimum of CMA in a noiseless environment and for
a doubly-infinite length equalizer. This is then found to be
equal to E|a|4/E|a|2.

The fact that this cost function, which was conceived for
the PSK modulation, also works for QAM is quite surprising.
However, in this case, the descent algorithm (7) generates a
significant amount of noise.

3.2.2 Constant sQuare Algorithm

If we look at the constellation of the QAM modulation
(fig. 2), we see that it presents more a “square” aspect than a
“round” one. As the CMA uses the module norm the “round”
aspect is taken into account but not the “square” one. As the
CNA class is pretty simple and nice, we would like to derive
a particular case satisfying the intuitive idea. This princi-
ple was already developed in the multi-modulus algorithm
(MMA) [3]. But it is more a matter of the decomposition
of the CMA on the phase and quadrature channels, than the
generalization of the CMA to QAM. Moreover this algorithm
does not belongs to the CNA class.

`CMA

`CQA

Figure 2: Principle of CMA and CQA.

We remark also on the figure 2 that the distance `CMA
between the symbol and the circle is, in average, bigger than
the distance `CQA between the symbol and the square. From
this fact, we expect that the noise of the algorithms is lower
for the square than for the circle.

In order to build a CNA which corresponds to the intu-
itive description above, a norm should be chosen carefully.
In fact, if we look the field C as the real plane R2 we could
define a norm whose ball is a square: the infinite norm, de-
fined by

‖z‖∞ = max
(
|Rez|, |Imz|

)
, (8)

Thus taking this norm and plugging it into the cost func-
tion (4) gives us the algorithm called CQA for Constant
sQuare Algorithm. This algorithms penalizes the output of
the filter W which are far away from the square of radius R.
The idea is then the same than the CMA which penalizes the
outputs away from the circle.

The parameter R is also given by (5) which depends on
the constellation. Of course, the value of R for the CQA is
different for the one for the CMA.

Therefore, the CQA cost function is given by

J (z) =
1
4

E
∣∣‖z‖2

∞−R
∣∣2

, (9)
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where we restrict ourselves to the more usable case p = q =
2. The pseudo-error function, φ(z), used in the descent algo-
rithm (3), for the CQA becomes:

φ(z) =
(
‖z‖2

∞−R
)

F(z)

F(z) =
{

Rez if |Rez|> |Imz|,√
−1 · Imz otherwise.

(10)

Even if the algorithm of the CQA given by (10) seems to
be more expensive than the CMA, the complexity is of the
same order.

3.2.3 p-norm CNA

In order to simplify the presentation, the two parameter p and
q of (4) will be set to 2. Moreover we will focus on the norms
which are called p-norm defined by

‖z‖p = p
√
|Rez|p + |Imz|p. (11)

With this norm the cost function becomes

J (z) =
1
4

E
∣∣‖z‖2

p−R
∣∣2

. (12)

The interest of these algorithms is to permits to optimize
the norm thanks to a criterion. In the following, we will
derive a general form given the Excess Mean Square Error.
This parameter which measure the noise of the algorithm will
allow us to optimize the norm. Moreover, as the modulus
corresponds to the 2-norm, the CMA is included into the p-
norm.

4. CONVERGENCE ANALYSIS

In a recent paper [4], we proposed a geometrical derivation
of the Excess Mean Square Error (EMSE) for Bussgang Al-
gorithms in a noiseless environment.In that article, we ap-
plied the Pythagoras theorem and we found a general form
of the EMSE. In this form the cost function appears explic-
itly in the equation. As an example, we applied this method
to CMA and we found the results previously obtained in the
literature [5, 6]. Now, we are going to apply this result to
CNA algorithm.

5. PYTHAGORAS AND LMS

First of all, we should define several points of the figure 3.
zopt is the output of the optimal filter and zk is the out-
put of the filter at time k and zk+1 the output of the fil-
ter after the update (1). Mathematically speaking, we have
zopt = 〈Wopt,Xk〉, zk = 〈Wk,Xk〉 and zk+1 = 〈Wk+1,Xk〉.

As classically done, we define two errors: ea the a priori
error, and ep the a posteriori error. These errors represent the
difference between zopt and zk or zk+1. Noting ∆Wk = Wk−
Wopt, we have ea = 〈∆Wk,Xk〉 and ep = 〈∆Wk+1,Xk〉. To
further simplify the notation, we introduce the vector u =
Xk
‖Xk‖

. And in order to put the points zopt, zk and zk+1 on the

figure, we defined αopt, αk, and αk+1 as αi = zi
‖Xk‖

u.
Now if we apply the Pythagoras theorem in both triangles(

αopt,αk,Wk
)

and
(
αopt,αk+1,Wk+1

)
, taking into account,

as it is obvious and could be seen in the figure 3, that the

Xk

Wk+1

Wk

Wopt/(Xk, Wk)

µφXk

αk+1 αk

αopt

ea

‖Xk‖

ep

‖Xk‖

Figure 3: Geometrical interpretation of LMS

norm of the projection of Wk on the orthogonal space of Xk
is constant, we find

‖Xk‖2‖∆Wk+1‖2−|ep|2 = ‖Xk‖2‖∆Wk‖2−|ea|2. (13)

We search now a relation between ea and ep. As it could
be seen in figure 3 and using (1), ep could be rewritten as

|ep|2 = |ea|2 + µ
2|φ |2‖Xk‖4−2µ‖Xk‖2 Reφea. (14)

For the ease of computation, we define the following
quantity,

∆e
4
=
|ep|2−|ea|2

µ‖Xk‖2 = µ‖Xk‖2|φ |2−2Reφea. (15)

5.1 EMSE computation

The following remarks will be used to derive the EMSE ex-
pression. During the Steady State phase we remark that:

lim
k→inf

E‖W̃k+1‖2 = lim
k→inf

E‖W̃k‖2, (16)

then we obtain:
E|ea|2 = E|ep|2. (17)

Therefore, with the classical independence assumption
between the data and the error, we obtain E∆e ≈ 0. The
main idea of the following is to develop an approximation of
the cost function near its optimum zopt. As zk − zopt is the a
priori error ea, we will find a simple relation between ea and
the value of the function φ at the optimum. Thanks to this
relation, the EMSE will be computed as E|ea|2.

Some assumptions are needed to derive the EMSE form.
The a priori error ea is assumed centered and independent
of ‖Xk‖2. For the real case, ea is supposed to be such that
Ee3

a ≈ 0 and in complex case, ea is circular (i.e. Ee2
a = 0).

The power of the input vector will thereafter be noted PX =
E‖Xk‖2.

The complete development could be found in [4]. In the
complex case we find

EMSE ≈ µPX
E|φ(zopt)|2

2E∂zz

{
Reφ(z)(z− zopt)

}∣∣
zopt

. (18)

As the EMSE is a linear function of µPX , comparing algo-
rithms could then be done through the comparison of the
slope of the EMSE given by the ratio of (18).
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5.1.1 Constant Norm Algorithm Application

We consider thereafter that the different algorithms converge
to the optimal ZF equalizer. In this case, the zopt variables
is a point a of the constellation. With this assumptions, and
once the maths are done, the EMSE of the general CNA is
given by

EMSECNA ≈ µPX ·
En6(a)|∂zn|2−2REn4(a)|∂zn|2 +R2 En2(a)|∂zn|2

2En3(a)∂zzn−2REn(a)∂zzn+6En2(a)|∂zn|2−2RE|∂zn|2
.

(19)

The EMSE of the p-norm CNA is then given by putting the
following relations (20) and (21) in (19),

|∂zn|2|a =
(

‖a‖p

‖a‖p−1

)2(p−1)

; (20)

∂zzn|a =
1− p
‖a‖p

p

(
‖a‖p−1

p−1 +‖a‖p‖a‖p−2
p−2

)
. (21)

The EMSE of the CMA is then given by computing the
previous equations with p = 2 which gives

EMSECMA ≈ µPX
E|a|6−2RE|a|4 +R2 E|a|2

2(2E|a|2−R)
. (22)

This equation is exactly the equation found in [5, 6].
Mathematically speaking, it is not possible to apply di-

rectly equation (19) with the infinite norm instead of p. Then
to compute the EMSE of the CQA we should start from the
equation (9) using the equation (18), and after some maths,
we found the EMSE of the CQA which is given by

MSECQA ≈ µPX
E‖a‖6

∞−2RE‖a‖4
∞ +R2 E‖a‖2

∞
3E‖a‖2

∞−R
. (23)

6. RESULTS AND COMPARISONS

Firstly, we drew on the figure 4 the slopes of equation (19)
with respect to the parameter p of the p-norm. The EMSE
is dependent of the point a of the constellation, we choose a
16QAM constellation for this result. This graph show that
the optimal value of p in respect to the EMSE seems to be
around 6. The slope of the CQA drawn on the figure 4 should
be taken carefully because the mathematical derivation is not
exact. In fact, if we take into account the bias introduced by
the derivation, the CNA-6 becomes better than the CQA.

To check these results, we simulate the algorithms and
compute the EMSE.We performed these simulations in a
SIMO context, with a 16-QAM modulation. We also draw
the theoretical results given by (19). The results are given on
the figure 5. The dotted lines represent the simulation results
and the solid ones the theory. It could be seen that there is
a good agreement between the simulation and the theoreti-
cal results. These results also confirms that the EMSE of the
CNA for p = 6 is much lower that the one of the CMA (for
the same step size).

7. CONCLUSION

In this article, we have shown that the best norm, belonging
to the CNA family,in order to equalize QAM modulation, in
a blind manner is the norm 6.

CNA-p
CQA

2 4 6 8 10 12
0
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Figure 4: Slopes of the EMSE of p-norm CNA wrt p
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Figure 5: SIMO simulation for a 16-QAM

This result should be considered in respect and (only in
respect) of the EMSE of the algorithms.
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