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ABSTRACT
During the last ten years, many techniques have been de-
vised to add directionality in image processing. We may
cite, for instance, directional wavelets [1], steerable filters
[8], curvelets [2], contourlets [5], .... This has opened the
door to new ways for efficiently representing objects by ori-
ented atoms. Real images, however, contain more than just
smooth curves and straight lines defining contours of ob-
jects. They can present also details that are less oriented and
more isotropic (like corners, spots, texture elements, ...).
We present in this paper a tool which can be tuned relatively
to these image features by decomposing them into a (linear)
frame of directional wavelets with variable angular selectiv-
ity. To obtain such a decomposition, these new functions ex-
ploit some particularities of the (biorthogonal) circular mul-
tiresolution framework in the frequency domain. This link
suggests the name of our method, ‘multiselectivity analysis’.

1. INTRODUCTION

An image f of finite energy, that is, f € L?(IR?), can be ana-
lyzed by an admissible wavelet @ € L' (R?) N L?(R?) through
the continuous wavelet transform (CWT) [1] defined by

Wi(b,a,0) = (W,olf (1)
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where * denotes the complex conjugation, ('UZ,a,e is an
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L'-normalized copy of (, translated by b € R2, dilated
by a € R, and rotated by 6 € S! ~ [0,2m). In these
equations, rg is the usual 2 x 2 rotation matrix, and the
hat denotes the standard Fourier transform on L*(R?),

that is, f(K) = [ d2% f(%) e ™, with inverse f(¥) =
2m)~2 fp &%k f(K) &F.

Eq. (3) tells us that, if {J has a support mainly contained
in a convex cone with apex on the origin, the wavelet (J is
able to detect locally oriented features in f* for which fre-
quencies are roughly located at the same place in the Fourier
domain (e.g. straight lines). The angular selectivity of (,
that is, its capacity to distinguish very close orientations, is
also inversely proportional to the aperture of the supporting
cone [1].

Suppose now the wavelet {J is separable in polar coordi-
nate, that is,

A

P(k) = p(k) ¢ (k), )

65

where k = (k,k), k= |k|, kK = argk and ¢ is a positive func-
tion in L%(S!,dk). The directionality of ¢ is now controlled
by the size of the support of ¢.

In that case, the wavelet transform (1) becomes

Wy(b,a,0) = (po|Ry ) (5)

where @g(K) = ¢(k — 0), (:|-) ¢ is the scalar product of two
functions on S!, and Ry , is the angular function

s’

RZW kdk p*(ak) f(k,K) eikbcos(Kfﬁ).
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(k)= (6)
In other words, the coefficient W, can be interpreted as the
approximation of R; obtained by ¢ around the angle 6.

Let now D; be a dilation by a factor £ € R, on S (its
action may be obtained, for instance, by dilating a function
of L?>(R) and then periodizing it on S' [6]). We define the
new coefficients

Wy(b,a,€,0) = (9elR; ) (7)

where @g 9 = De@g, corresponding to the 2-D wavelet

LTIS(%) = p(k)¢e (k). This highly redundant construction
is angularly very similar to the one obtained for the 1-D
CWT [1]. In addition, the angular selectivity of (g is pro-
portional to £~!'. Thus we may expect that very oriented fea-
tures in f will be well represented for small &, while more
isotropic ones will correspond to a bigger €. This point will
be made quantitative in Section 4 with the help of a (circular)
biorthogonal multiresolution analysis, described in Section
3. We show in Section 5 how to adapt the angular selectivity
of the wavelet to the content of an image. Finally, the method
is illustrated on an example in Section 7.

N

2. DIRECTIONAL FRAMES OF WAVELETS

From the half-continuous frame theory [9], the continuous
wavelet transform given in (1) can be discretized in its pa-
rameters a and 6 while preserving a perfect reconstruction
formula. Given a wavelet ¢ € L?(R') N L*(R?) with the
polar separable form (4), we consider the dyadic discretiza-
tion of scales a; = ap2™/ (j € Z, ap € R, ) and the regular
discretization of angles 6, = n2¥ (n € Z[N] := {0..N — 1},
N € N°). If the frame property is satisfied, that is, if there
exist two constants m, M € R*. such that,

< plaik)*|p(k —6,))> < M, (8)
m gZHE%N]I (ajk)|” |9 ( )|



a.e. for (k,k) € Ry x S, then f € L?(R?) can be rebuilt as

=3 Z W% By 6, (), ©)
JEZneZ[N]
where J is a certain dual wavelet, and with WJn(B) =
Wf(b,aj, 9,,)
A particular case is obtained when
plajk)p(k—6,) = 4, A€R, (10)
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a.e. for (k,k) € Ry x S'. This defines a linear frame, for
which § = 9, so that we have the Littlewood-Paley decom-

position
) =4 EZ % Wjn(¥)
JELnEZIN

Finally, both in the general case and in the linear case, a scal-
ing function can be introduced to fix a lower bound to the
available resolutions j. For a linear frame, we define the

an

function - -
{(k) = B(ajrg, k). (12)
jZNnEZN] o
Thus, writing S (b) = (Zb 1/), we have, forJ € N,
fE) = A7'Ss @) +4a! 3 Win(®).  (13)
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3. BIORTHOGONAL MULTIRESOLUTION ON C!

Consider a biorthogonal multiresolution analysis in L?(R)
[4] generated by a scaling function @ € L?(R) and a wavelet
X € L*(R), both biorthogonal to their dual counterparts
@, X € L*(R). All these functions are linked through their
refinement equations to the filters 4, g, J and g. For instance,

EZ hln
This multiresolution analysis can be adapted on the circle

C' =~ [0,1) [4]. Writing u; ,(t) = 2/?u(2't — n) for any func-
tion u € L?(R), we define the periodized version of ¢, as

$ra(t) ZZ @n(t+m), 5)

The same operation applied on X; ,, (’;V)[’n and X;, leads, re-

tfn

(14)
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spectively, to X7, ¢1, and X; , € L*(Ch).

Since, for/ > 0, u; ,(t) = v, »1,(¢) for any function v, ,
obtained by a periodization of a function u, € L*(R), the
spaces V; = {dy, :n € Z[2']}, W; = {xs., : n € Z[2']} and
their dual equivaients have all the same finite dimension 2'.

If we require that ¢ and & realize a partition of unity, that
i8, if S ez @t —m) =3 ez @(t —m) = 1, it can be proved
[4] that, forall# € R, ¢y ,(t) = d~)1’,, (1) = 2712 for 1 <0, and
X1.a(t) =X14(t) =0 for/ < 0. As a consequence, forall / <0,
V; and \71 consist of constant functions on C!, while for all
/<0, W;and W; reduce to the zero function.
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In addition, V; and \7\71, and also \71 and W, are still
orthogonal since, VI,I" € N, Vn € Z[2!], and Va' € Z[2"],

<ul.n|vl’.n/>c1 = %<ul,n|vl7n/721/q>»
g€

for the functions u;, and v; , obtained by periodization of
two functions u; , and v; ,, and with the scalar product (-|-) 1

taken on C'.

In conclusion, since the 1nclu510ns V;, C Vi, W, C
Wi, V; C V,H, and W; C W,H are inherited from R,
we obtain a biorthogonal multiresolution analysis on C! gen-
erated by the functions ¢; ,, X1, cT) 1> and Xz .

Writing s[n] = ¥ ez s[n +2'm)] for a sequence s € I2(Z),
these four functions are linked to the filters /;[n], g[n], hn]
and g;[n] through the refinement equations

(16)

Gro1a(t) =5 Iulg—2n]dr4(t), (17)
qEZ[ZI]

)= S ala-2lb@,  (8)
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and similarly for the dual counterparts.
In addition, a reconstruction from resolution / to resolu-
tion / 4 1 is possible with

Griiat) = 3 i —2m] ()
mez[2!]
+ gry1[n —2m) X1 m(2). (19)
mez[2!]

4. MULTISELECTIVITY ANALYSIS

From the circular biorthogonal multiresolution analysis de-
tailed in the previous section, we create 2-D directional
wavelets with the following properties:

e They combine with each other in a pyramidal scheme to
form wavelets with a lower angular selectivity until one
obtains a totally isotropic one;

e They define a half-continuous linear frame for each se-
lectivity level.

With the notations of the previous section, we first define the
new wavelets

@i (k) = p(K) br.n(K). (20)
@fu (k) = p(K) yin(K). 1)
with k = (k,K) in polar coordinates, 01.(K) = b1y (5) and
Vin(K) = Xin(5), the analogues of ¢ and X on the cir-
cle S' ~ [0,2m). The exponents a and d labeling the two

wavelets remind that they are related to approximation and
detail functions in the multiresolution scheme.

Notice that the parameter n stands for a rotation, since
LTI;‘H( ) = q"lo(re k), while the parameter / determine a se-
lectivity level. Indeed, the half-aperture a € [0, 71 of the cone
supporting %, and ¢ is proportional to 27/, which means
that the angu17ar selectlzvity of these wavelets growths with /
[7]. This behavior is shown in Figure 1 for the wavelets de-
scribed in Section 6 below. In this particular case, we have
a=2"2rforl > 2, so that the wavelet Lﬁ;’nd is conical for
1>411]. ’



Figure 1: )} 0( ), with o = 11/2 (left); U} 0( ) with o = 11/4;
this is a conical wavelet (right).

Proposition 1 Let a; = ag2™/ be a dyadic scale discretiza-
tion. If Y czp(ajk) =1 ae for k € Ry, then, for any
[ €N, the family {W, IniJELNE Z[211} is a linear frame
of L*(R?), i.e., it obeys (10) with A = 2'/?¢.

A proof may be found in [7]. Hence, given a function f €

L?(R?), we have, for J € N and a fixed selectivity level / € N,
the reconstruction formula (we put ¢ = 1)

S&X) = S, + 212 VI/j?t[7n(f)’ (22)
J=TI+ 1 na
with W3, (B) = (g M) = (BualRs ) > and the 2-D

scaling function Z( ) =73 je-nplajk).
Notice that, from the recursion rules (17) and (18),

VV;I.,lfl,n(B) = h;([nl 27’1] ﬁl,n’(z)
n'ez[2!]
= (mew.(5),,, (23)
Wl .B) = (Z@W? (b)), (24)

where §;[n] = s;[—n], ® is the circular convolution between
two sequences with the same period, and (-), means that we
take the p™ orientation of the result. A reconstruction is also
possible starting from (19), namely,

2 1n(B) = (i @ W2 (B)), + (& ®WE, (B)),,

where - is the oversampling operator defined by s[2n] = s[n]
and s[2n + 1] = 0 for any sequence s[n], acting here on the
orientation parameter of the wavelet coefficients.

Equations (23) (24) and (25) tell us that the wavelet co-
efficients W (b) follow a pyramidal construction scheme

with respect to the selectivity level /.

(25)

5. ADAPTIVE SELECTIVITY

With the linear frame described above, the selectivity level /
can be adapted to the content of f.

Proposition 2 Given a function | : R x 7 — N, (X, )) —
I(X, ), and any index J € N, an element f € L>(R?) can be
decomposed as

2w @, o

J==I+1 ezl

67

This is a simple consequence of the identity
Snezpl] 2 2 W2, (X)) = W), where Wi(X) = W) (%)
are the coefﬁ01ents correspondlng to the isotropic wavelet

@' (k) = p(k). N

Given a highest selectivity level L € N, / will be defined
in the sequel as the level which yields the best match between
the function f and a wavelet of this level, that is

—1
L 7

~

I(b, )

argmax max |({

(27)
I€fo,L] neZ2’]

6. CHOICE OF THE WAVELETS

hin]
0.53033008588991
0.17677669529664

hin]
0.95164212189718
—0.02649924094535
—0.30115912592284
0.03133297870736
0.07466398507402
—0.01683176542131
—0.00906325830378
0.00302108610126

PN UL AW —

Table 1: CDF filters with p =3
ments.

and p = 7 vanishing mo-

For defining the functions ¢ and X, thus their periodized
versions ¢ and x, we use the results of Cohen-Daubechies-
Feauveau [3] on the construction of a compactly supported
biorthogonal basis of wavelets with a given number of van-
ishing moments. In particular, we select the filters /# and &
with p = 3 and p = 7 moments, respectively (see Table 1).
This basis is linked to a quadratic B-spline (of order p — 1)
[10], and it guarantees a second order regularity on the edges
of the cone supporting {J} ’nd (k).

Since Proposition 1 requires that 3 ;-7 plajk) =1, we
choose simply p(k) = @(log, k), noting that the B-spline ¢
yields a partition of unity, i.e., 3 ,cz @(f +m) = 1.

Numerically, all the analyzed functions f are discretized,
and thus they are assumed to belong to % = {f € L*(R?):
(k) = 0,if ||k||o > 1}. Since supp@ = [—3/2,3/2], by
choosing ag = 232! ~ 0.9003 in the discretization of
scale, supp p(apk) C [11/8, 1] and j must take negative val-
ues. So, up to certain high frequency residual functions [7],
the reconstruction (13) remains valid for j € [-J+ 1,0], with
J € N resolutions.

For every / € N, the linear frame {{%,  } obtained with
such a choice will be called the Angular Splzne Frame (ASF)
of fixed selectivity /. If the selectivity level is choosed adap-
tively according to the content of f, i.e., if / = (¥, j), we will
speak of an adaptive ASF.

7. NONLINEAR APPROXIMATIONS

For a frame .# = {{, € L*(R?)}, where A stands for the
parameters of the wavelets, we define the N-term nonlinear
approximation of a function 1 € L?(R?) by

N

=5 (U lf) Gy,

k=1

(28)



where # = {5 € L*(R?)} is the dual frame of .7,
and where A; is a reordering of the parameters A s.t.
m, = W7 (W 1) = my,, Yk € N. The value my is
called the magnitude of the coefficient () | ).

Unlike the case of the orthogonal bases, it is not guaran-
teed for frames that fy is the best N-term nonlinear approx-
imation. We will assume, however, that the error €/[N] =
lf — fw] is globally decreasing with N.

In this paper, we use nonlinear approximations to com-
pare the fixed and the adaptive ASF methods.! However,
these two frames do not have the same number of elements.
Therefore, we define the T%-term nonlinear approximation
(with T € [0,100]) as the approximation obtained with N =
| 165 M | of the best terms, where M represents the total num-
ber of elements in the frame.

(©

(d)

Figure 2: 1%-term nonlinear approximations. (a) Orig-
inal image (sunflower fields). (b) Adaptive ASF, 10%-
term approximation (18.22 dB). (¢) and (d) 1%-term approx-
imation respectively for fixed (13.84 dB) and adaptive ASF
(14.27dB).

For comparing the fixed and the adaptive ASF methods,
we analyze the image of a sunflower field (Fig. 2(a)). This
picture presents both directional objects, like the sticks and
the leaves of the plants, and more isotropic features like the
dark center of the flowers. In addition, because of the an-
gle of view of the camera, these elements appear at various
scales, depending on their distance to the objective.

Figures 2(c) and 2(d) show nonlinear approximations
obtained for 1% of the total number of terms in the fixed
and adaptive methods, respectively. In each case, we take
L =4 (16 orientations) with J = 5 number of scales. The
corresponding qualities of the approximations, expressed in
PSNR, are equal to 13.84 dB and 14.27 dB. We can observe
that, without losing the main directional objects, the adap-
tive method displays most of the dark centers of the flowers,

In practice, we can “count” the positions b, since they are discretized
for a band limited function f € %y
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whereas they are completely absent in the fixed selectivity
method. This effect can be tested at higher percentages. For
instance, for 10%-term approximations, the fixed ASF gives
a PSNR of 16.72 dB, while the adaptive one provides a qual-
ity of 18.22dB (Fig. 2(b)). This phenomenon is explained
by the number of coefficients needed to render an object. To
give an example, if a feature corresponds to a selectivity level
L — 1, the adaptive ASF saves 2/~ — 1 coefficients, which
are then used to described other features.

8. CONCLUSION

We have presented a new family of wavelets characterized by
their controlled angular selectivity (through their selectivity
level), and inheriting several multiresolution properties like
the recursion rules, the linearity of the frame, and the direc-
tionality thanks to the compacity of the filters. Finally, in
the context of nonlinear approximations obtained with a re-
stricted number of terms, the last section has shown that the
adaptive ASF method saves a certain number of coefficents
which can then be reallocated to other features.
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