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ABSTRACT

The AR model is used in many applications such as speech
processing. However, when the observations are contami-
nated by additive noise, standard methods produce biased
AR parameter estimates. To avoid a non linear approach to
estimate the signal and the parameters at the same time, such
as the EKF, a sequential method using two conditionally
linked Kalman filters running in parallel is here presented.
Following the instrumental variables concept, at each step in
time, one of the filters uses the latest estimated AR parame-
ters to estimate the signal, while the second one uses the
estimated signal to estimate the AR parameters, to be used in
the next step. This approach, already applied in hydrological
applications, has the advantage of providing an unbiased
estimation of the parameters and an estimation of the signal
in the steady state. This method is then derived in the
framework of speech enhancement.

1. INTRODUCTION

The autoregressive (AR) modelling technique is used in a
wide range of applications such as speech processing and
biomedical engineering. It consists in modelling a signal by a
p" order AR process s(k) defined as follows:

P
s(k) = —z a;s(k —i)+u(k) (1)

i=1
where 6 = [a, a,l T is the vector of the AR pa-
rameters and u(k) is the so-called driving process, assumed

to be zero-mean Gaussian white noise with variance 0',3 (k).
Many approaches have been developed to obtain an estima-
tion é of @, based on s(k) . A widely used solution consists

in solving the Yule-Walker (YW) equations. On-line methods
have been also developed which are based on adaptive filters
such as LMS, RLS or Kalman filter.

In real cases, the signal s(k) is often corrupted by an addi-
tive noise v(k), usually assumed to be zero-mean Gaussian
with variance &2

y(k) = s(k) +v(k) 2

In this case, the above approaches provide biased parameter
estimates and produce a “flatter” spectrum because the corre-

sponding poles are closer to the centre of the unit circle.

The Modified Yule Walker (MYW) equations [10] make it
possible to obtain a consistent estimation of AR parameters.
However, only a reduced number of noisy observations is
available in real cases. Zheng et al. [15] have developed an
iterative bias correction based algorithm. In [1], Davila et al.
propose to view the AR parameter estimation issue as a quad-
ratic eigenvalue problem. On-line methods using for instance
the y-LMS [12] or a derived version of the so-called p-LMS
[14] can also be considered.

When developing a Kalman filter-based method, signal esti-
mates are necessary to retrieve the AR parameters. This is a
special case of the joint parameter and signal estimation
problem, also referred to as the dual estimation problem [6].
A non linear solution consists in using an Extended Kalman
Filter (EKF). However, the convergence properties of the
EKF are not guaranteed due to the non linearity of the prob-
lem. For this reason, Nelson et al. [8] have used in the
framework of control two separate Kalman filters. Once the
parameter estimation convergence has been reached, the sig-
nal is retrieved by deriving a Kalman filter with the innova-
tion model and the steady-state Kalman gain.

In this paper, we present an alternative solution involving
two interacting standard Kalman filters and following the
instrumental variables concept [13] [7]. At each step in time,
one of the Kalman filters estimates the signal conditionally to
the latest estimated value of the parameters. Conversely, the
second filter estimates the parameters conditionally to the
latest a posteriori signal estimate. It can be shown that the
optimality conditions keep the two filters mutually orthogo-
nal, which avoids the necessity of specifying the covariance
between parameters and signal as in the EKF. Thus, this algo-
rithm has the advantage of providing unbiased AR parameter
estimates from noisy observations.

The remainder of the paper is organized as follows: In part
2, we present the proposed algorithm. In part 3, a compara-
tive study is completed on synthesised data with existing
methods. In part 4, a derived version of the algorithm is
tested in the framework of speech enhancement and is
compared with various Kalman filter-based speech en-
hancement algorithms.

It should be noted that this paper extends a previous result

proposed in the framework of water resources by one of the
authors [11].

633



2. SEQUENTIAL ESTIMATION OF THE AR
PARAMETERS FROM NOISY OBSERVATIONS

2.1 Estimation of the signal from noisy observations

Here, the purpose is to generate signal estimates $(k) from

noisy observations. Since the Kalman filter produces a recur-
sive estimate of the state vector x(k), we define it by:

2k =[sk) -~ sk—p+Df 3
The resulting state space representation of the system (1)-(2)
is given by:
(Fw>=®mmw—n+rmm @
y(k) = Hx(k) + v(k)
where the transition matrix ®(k), the input vector I' and
the observation vector H respectively satisfy:

—ay(k-1) ~a,(k-1)
Ok — 0 0 0
(k)= o 5
0 0 1 0
and H=T"=[t 0 - 0] (5)

In the following, X(k//) and P(k/I) will respectively de-
note the estimation of the state vector x(k) given / observa-
tions and its corresponding error covariance matrix.

Once a new observation y(k) is available, the Kalman filter

(denoted by KF1 in Fig. 1) provides a recursive estimation of
x(k) and an estimation of the speech signal, as follows:

S(k/k)y=Hx(k/k) 6)
where  x(k/k)=®(k)x(k—1/k—-1)+ K (k)v(k) 7
K(k) and v(k)=y(k)—HO(k)x(k—1/k—1) are respec-
tively the Kalman gain and the innovation process.

The filter is optimal if the innovation v(k) is a zero-mean

Gaussian white noise. Its covariance matrix then satisfies:
C(ky= HTP(k/k-D)HT + o2 (k) (®)

However, the filtering can be completed providing an estima-

tion of the linear prediction coefficients é(k) and the noise

variances 03 (k) and 0'3 are known. For this purpose, we
propose to run another Kalman filter in parallel.

2.2 Estimation of the AR parameters from the filtered
signal

In this section, we aim at estimating @(k) from the filtered
version of the observations s(k/k). Indeed, from equations
(7) and (6), §(k/k) and @(k) satisfy:
§(k/ k)= H[®(k)i(k -1/ k=1)+ K (k)o(k)]
=—x(k-1/k- l)T 9(k)+ HK (k)v(k) 9
= —)_Q(k—l/k—l)TQ(k)+u*(k)

Besides, the AR parameters can be assumed time-varying
and hence be modelled as a random walk:

O(k) = (k1) +u (k) (10)

* . . .
where u (k) is a zero-mean Gaussian random vector with

covariance matrix Q* L Q* is the null matrix, the signal is
assumed stationary.

As a consequence, the set of equations (9) and (10) defines
the state space representation for the recursive Kalman-based
estimation (denoted by KF2 in Fig. 1) of Q(k) :

Ok) = Ok =1)+1" (k) an
S(k/k)y=—-x(k—1/k—- I)TQ(k) +ou (k)
where —x(k—1/k - D)7 is now the observation vector. From

equations (8) and (9), the covariance matrix of U*(k) is

equal to R* = HK(k)C(k)K (k)" HT .

y(k-1) (k)
. v v
KF1 KF1 :
2k-1/k=1) N A 2(k/k) —’4
. v v ;o
i KF2 N K2 i
Ok-1/k-1) | |  6k/k)

Figure 1: Principal of the proposed algorithm.

In the framework of the instrumental variable techniques [13]
[7], s(k/k) is considered as an instrument and makes it

possible to provide an unbiased estimation of 4.

2.3 Estimation of the noise variances

The estimations of the variances 03 (k) and sz (k) are
necessary to complete this dual Kalman filter based method.
An iterative estimation of the variance o> (k) can be derived
[11] as follows:

G2 (k) :—k;I&f(k—l)+%DL(k)DT (12)

where D =[F"T['r" =i 0 - 0]
L(k) = P(k | k) - ®(k )Pk -1/ k = 1)D(k —1)
+ K(k)o? (k)K (k)" '

Besides, in many applications such as speech processing, the

an

. .. . 2 . .
variance of the additive noise o, can be obtained during
non-signal periods, corresponding to the silent frames.

An alternative method consists in using a recursive estima-

tion of 0'5 (k) , based on equation (8):
"2 k-1 ., 1
o, (k) = % (k—1)+;M(k) (13)

where M (k) = v*(k) - HP(k/k-1)HT .
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3. COMPARATIVE STUDY ON SYNTHETIC DATA

3.1 Protocol

We have carried out a comparative study with five other
techniques: the YW and MYW equations [10], Zheng’s
method [15] and on-line approaches [12] and [14]. A 2000
point 6™ order AR process is generated. The corresponding

poles are 0.75¢*/%27 | 0.8¢*/%4" and 0.85¢*/%7" . The
sequence is then corrupted by an additive zero-mean white
Gaussian noise, whose variance is assumed available. In the
results presented here, the Signal-to-Noise Ratio (SNR) is
assigned to 5dB.

3.2 Comments

According to Fig. 2, one can notice the biased estimates pro-
vided by the YW equations with noisy observations. The
MYW equations lead to poor results. In addition, it has been
observed that Zheng’s method does not necessarily converge
when the number of observations is small. This phenomenon
may be due to the use of the observation correlation function,
whose estimation is poor for large lags.
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4. ADERIVED VERSION FOR SPEECH
ENHANCEMENT

4.1 AR based speech enhancement issue

Various Kalman filter-based approaches have been proposed
to enhance a single sequence of speech contaminated by an
additive noise. These methods usually operate as follows:

1. the AR parameters and the variances, 03 and o-v2 are
first estimated;

2. the speech signal is then retrieved by means of a Kalman
filter.

The approaches essentially differ in the estimation of the AR
parameters and the noise variances. Thus, in the pioneering

work of Paliwal et al. [9], the AR parameters Q(k) , 0'3 (k)

and sz are respectively estimated from the clean speech and

the noise sequence, both assumed to be available. However,
this approach cannot be computed in practice. In [4], the AR
parameters and the noise variances are estimated from the
noisy speech and Kalman filtering is carried out to enhance
the observations.
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Figure 2: AR parameter estimation for various off-line and on-line approaches; SNR=5dB (20 realisations).

Comparing to other on-line methods, our approach provides
estimated spectra closer to the expected one. Indeed, al-
though the LMS-based methods have low computational
cost, they converge slower and with higher variance than our
technique. The Kalman filter makes it possible to provide
minimal variance estimates, contrary to gradient-based fil-
ters. In addition, the proposed technique has the advantage to
estimate both the parameters and the signal.

Therefore, this drives us to exploit the proposed technique in
the framework of speech enhancement.

Then, an iterative process aims at estimating the parameters
from the enhanced signal and using them to perform anew
Kalman filtering with the noisy signal. However, the authors
in [4], [9] do not explicitly address the way the speech pa-
rameters can be obtained. Besides, many other Kalman filter-
based algorithms have since been proposed [2] [3] [5]. For
each method - except in [9] - the enhanced speech is usually
contaminated by a residual noise. This noise, responsible of
the so-called “musical phenomenon”, can be weakened by
using a Kalman smoothing [2].
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4.2 Proposed algorithm

Based on the results obtained in section 3, we now propose to
investigate a derived version of the presented dual Kalman
filter-based method for speech enhancement.

In this algorithm, the signal, the parameters and the variance

of the driving process are simultaneously estimated. There-

fore, the algorithm convergence rate may be quite low. How-

ever, when processing speech (frame by frame), only a lim-

ited number of samples are available (256 samples at

8 KHz). To obtain a significant number of observations, we

propose an iterative approach which processes the noisy

frame, as follows:

1. the dual Kalman filter-based estimator is carried out to
provide a first estimation of the model parameters, with
no specific initial conditions;

2. the same frame is processed again, but the parameter ini-
tial conditions are here the previously estimated values.
Besides, the variance of the additive noise is estimated dur-

ing non signal periods.

4.3 Protocol and results

The real French sentence /Le tribunal va bientot rendre son
jugement/, sampled at 8 kHz is contaminated by an additive
white noise, with various SNR ranked from 5 to 15 dB.
Results are based on 100 realisations.

SNR Gibson' [4] Proposed algorithm
. Paliwal’ : : - p
}nput [9] iteration 1teration
(in dB) I I I T I O I B
5 4.9 32 | 43 | 45 | 29 | 43 | 44
10 34 24 1 30 | 3.1 1.9 | 3.0 | 3.0
15 2,2 1,7 120 | 21 1.7 1 20 | 2.0
Table 1: Average SNR improvements (in dB).
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Figure 3: Clean and estimated AR spectra for one processed
frame (phoneme /JU/ in French); SNRinput=10 dB.

When comparing the SNR improvements in Table 1, Gib-
son’s approach and our algorithm have similar performances.

' The AR parameters are estimated with the YW equations.

Informal subjective listening tests confirm that the differ-
ences between the enhanced signals are not really audible.
Nevertheless, the AR spectrum estimated with the proposed
approach exhibits resonances that are comparatively sharper
than Gibson’s one (Cf. Fig. 3).

5. CONCLUSION

In this paper, the AR parameter estimation issue from noisy
observations is addressed. The proposed solution is based on
two Kalman filters running in parallel and avoids a non linear
approach, for instance based on the EKF. This method has
the advantage of providing sequential unbiased estimates of
the AR parameters. This is confirmed by a comparative study
based on synthetic data. Then, a derived version of the algo-
rithm is proposed in the framework of speech enhancement.

REFERENCES

[1] C. E. Davila, “A subspace approach to estimation of autore-
gressive parameters from noisy measurements”, IEEE Trans.
on SP, vol. 46, n°2, pp. 531-534, February 1998.

[2] S. Gannot, D. Burchtein, E. Weinstein, “Iterative and Se-
quential Kalman Filter-Based Speech Enhancement Algo-
rithms”, IEEE Trans. on SAP, vol. 6, n°4, pp. 373-385, July
1998.

[3] E. Grivel, M. Gabrea, M. Najim, “Speech Enhancement as a
realization issue”, Signal Processing, vol. 82, pp. 963-1978,
December 2002.

[4] 1. D. Gibson, B. Koo, S. D. Gray, “Filtering of colored noise
for speech enhancement and coding”, IEEE Trans. on SP,
vol. 39, n° 8, pp. 1732-1742, August 1991.

[5] Z. Goh, K. C. Tan, B. T. G. Tan, “Kalman-Speech Enhance-
ment Method Based on a Voiced-Unvoiced Speech Model”,
IEEE Trans. on SAP, vol. 7, n°5, pp. 510-524, September
1999.

[6] S. Haykin (Ed), Kalman Filtering and Neural Networks,
Wiley-Interscience, 2001, chap. 5.

[7] M. Kendall, A. Stuart, The advanced theory of statistics,
Griffin London, 1979.

[8] L. W. Nelson, E. Stear, “The simultaneous On-Line Estima-
tion of Parameters and States in Linear Systems”, IEEE
Trans. on AC, vol. 21, n°2, pp. 94-98, February 1976.

[91] K. K. Paliwal, A. Basu, “A Speech Enhancement Method
Based on Kalman Filtering”, Proc. ICASSP‘87, vol. 1,
pp-177-180.

[10] C. W. Therrien, Discrete Random Signals and Statistical
Signal Processing, Prentice Hall, 1992.

[11] E. Todini, “Mutually Interactive State/Parameter Estimation
(MISP) — Application of Kalman Filter to Hydrology, Hy-
draulics and Water Resources”, Proc. AGU Chapman Conf.,
Univ. of Pittsburg, May 1978.

[12] J. R. Treichler, “Transient and convergent behavior of the
adaptive line enhancer”, IEEE Trans. on ASSP, vol. 27, n°1,
pp- 53-62, February 1979.

[13] K. W. Wong, E. Polak, “Identification of Linear Discrete
Time Systems Using the Instrumental Variable Method”,
IEEE Trans. on AC, vol. AC-12, n°6, pp. 707-718, December
1967.

[14] W-R. Wu and P-C Chen, “Adaptive AR modeling in White
Gaussian Noise”, IEEE Trans. on SP, vol. 45, n°5,
pp- 1184-1191, May 1997.

[15] W. X. Zheng, “Autoregressive Parameter Estimation from
Noisy Data”, IEEE Trans. on Circuits and Systems II: Analog
and Digital signal processing, vol. 47, n°1, January 2000.

636



	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation  ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO  ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling  ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	David Labarre
	Eric Grivel
	Mohamed Najim
	Ezio Todini



