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ABSTRACT

A sound source separation technique based on a two-
layered bio-inspired spiking neural network and an en-
hanced gammatone analysis/synthesis filterbank is pro-
posed. One of the two bio-inspired proposed spectral
maps (Cochleotopic / AMtopic or Cochleotopic / Spec-
trotopic) is used as a front-end to the neural network
depending on the nature of the intruding sound. We
show that the use of an FIR gammatone filterbank out-
performs the previous results obtained by using an IIR
gammatone cochlear filterbank, since the FIR imple-
mentation has near-perfect reconstruction ability and
the cascade of the analysis and synthesis filterbanks is
linear-phase.

1 Introduction

The problem of monaural (one-microphone) sound
source separation is nowadays a very challenging prob-
lem in the speech processing field. Here we propose a
bio-inspired solution in the CASA (Computational Au-
ditory Scene Analysis) framework with no prior statisti-
cal knowledge of the underlying sources. The processing
steps are as follows: analysis filterbank, CAM / CSM
generation, auditory stream segregation and integration
[1] by the proposed neural network, generation of the
mask, and synthesis by the proposed synthesis filter-
bank. Fig. 1 depicts the block diagram of the analysis-
separation-synthesis technique used in this article. In
the following sections, we justify each of our choices.

1.1 Motivations for an enhanced gammatone
analysis/synthesis filterbank

In a previous work [2] we explored the poten-
tial of unsupervised monophonic source separation
with no prior knowledge of the underlying sound sig-
nals using a bio—inspired solution, in which pseudo
auditory images were obtained from two differ-
ent representations (Cochleotopic/AMtopic Map and
Cochleotopic/Spectrotopic Map). Basically, these maps
were generated by performing a spectral analysis (the
magnitude of the reassigned FFT [3]) on the output of
the gammatone filterbank. The approach presented in
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Figure 1: The block diagram for the proposed bio-
inspired sound source separation technique

[2] and the enhanced version presented here are based
on finding a mask for the intruding signal using the
CAM/CSM maps and then extracting and synthesising
the sources by using the output of the cochlear filter-
bank. In [2] and other works [4, 5] IIR gammatone fil-
terbanks are used as analysis/synthesis filters. We know
that the ITR gammatone filterbank introduces nonlinear
phase delays and since we use spectral information (no
phase information for now) with CAM/CSM maps, to
do the segregation, the approach proposed in [2] may
introduce phase distortion.

Consequently, a decrease in the quality of the synthe-
sised sounds will be perceived. In addition, the IIR gam-
matone filterbank is not perfect reconstruction. There-
fore, even if someone can find an ideal channel selection
strategy for sound segregation, he/she can never achieve
the ideal performance due to the distortions caused by
the ITR gammatone filterbank during synthesis. On the
other hand, as explained in section 1.2, the CAM/CSM
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generation is based on the magnitude of the FFT and
the phase information is ignored. We here propose to
use an FIR gammatone analysis/synthesis cochlear fil-
terbank [6] with near perfect reconstruction filters and
linear phase.

1.2 Motivations behind the CAM/CSM

We use 2-D  Dbio-inspired maps that we
call Cochleotopic/AMtopic (CAM) and
Cochleotopic/Spectrotopic (CSM) maps as a front
end to our neural architecture. The difference between
these two maps is that an AM demodulation is done
for the CAM but not for the CSM.

These 2-D representations are used to partially mimic
the peripheral auditory system, that adaptively extracts
representations suitable for higher auditory nucleus pro-
cessing. Furthermore, tonotopic maps are observed in
the colliculus and specialised cells in the cochlear nu-
cleus. We therefore infer that multiple representations
of the same signal are available to the auditory centers
and we propose to build a source separation system that
can simultaneously use two of these representations.

The selection of either CAM or CSM as a front-end,
depending on the nature of the intruding sound, can be
explained by recent neurophysiological observations [2].

1.3 Motivations for a spiking neural architec-
ture

Bio-inspired neurons mimic the functional behavior of
real biological neurons. In fact, the information in these
bio-inspired networks can be coded in the spike phase,
in the spike discharge rate, and into the relation between
the discharge patterns of the neurons in the network.

Most monophonic source separation systems are
based on either expert systems (explicit knowledge), or
on statistical approaches (implicit knowledge), or on bio-
inspired approaches [7] [4]. Wang and Brown [4] have
proposed an original approach that uses features ob-
tained from correlograms (extracted from the outputs of
a gammatone IIR filterbank), estimates FO (the pitch),
and uses an oscillatory neural network. Our system nei-
ther needs a priori knowledge of the underlying sources,
nor does it estimate FO or compute the computationally
expensive correlograms. Our method can then be classi-
fied as a non-parametric noise suppression technique (in
contrast with techniques that compute speech param-
eters such as the fundamental frequency). The neural
architecture is also designed to handle continuous input
signals (even if for now, the CAM and CSM are frame
based) and is based on the availability of simultaneous
auditory representations of signals. Our proposed archi-
tecture has less neurons and less connections for the
same task than the architecture proposed in [4], there-
fore it is computationally less expensive. In addition, by
using the analysis/synthesis FIR cochlear filterbank, in-
stead of IIR filters, the segregation and synthesis quality
are enhanced.

2 Analysis/Synthesis Filterbank

The proposed method allows to re-synthesise the audio
signal of a single sound source from a mixture of sources.
Generally speaking, this is achieved using a time-varying
filter. The pathway of the audio signal consists of a non-
decimated, static analysis filterbank, the time-varying
mask, and a static synthesis filterbank.

We use an FIR implementation of the well-known
gammatone filterbank [8] as the analysis filterbank. The
number of channels is 256 with center frequencies from
100 Hz to 3600 Hz uniformly spaced on an ERB scale.
The sampling rate is 8 kHz.

The actual time-varying filtering is done by the mask.
Once this mask is obtained by grouping synchronous
oscillators of the neural net (see section 4), the output
of the synthesis filterbank is multiplied with it. Thus,
auditory channels belonging to interfering sound sources
are muted and channels belonging to the sound source
of interest remain unaffected.

Before the signals of the masked auditory channels are
added to form the synthesised signal, they are passed
through the synthesis filters, which impulse responses
are time-reversed versions of the impulse responses of
the corresponding analysis filters. That means that the
magnitude of the frequency response of a synthesis filter
is the same as of the analysis filter in the same chan-
nel. The convolution with the time-reversed impulse re-
sponses linearises the phase responses and, if the impulse
responses of all filters have same lengths' and, there-
fore, same total group delay in all channels, summation
yields a phase-distortion-free result. For a low number
of channels, the only distortion of the pair of analysis
and synthesis filterbanks would be a minor magnitude
ripple in the overall frequency response. But for the high
number of channels used in our system, this is absolutely
negligible.

This non-decimated FIR analysis/synthesis filterbank
was proposed by Irino and Unoki [6] and also used in
the perceptual speech coder in [9] (in the latter with 20
channels only).

In an earlier version of our work [2], we used the IIR
gammatone filterbank proposed in [10]. We observed
phase distortions and an overall reduced signal recon-
struction quality. In addition, as stated earlier, since
the CAM/CSM takes into account only magnitude in-
formation, it cannot guarantee a good separation when
nonlinear phase IIR filterbanks are used. The new ap-
proach used in the present paper allows us to overcome
this problem with a significant increase of reconstruction
quality.

3 CAM/CSM Preprocessing

The 2-D bio-inspired maps are generated as follows:

IShorter gammatones of higher-frequency channels need zero
padding.
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e The sampling rate is 8 kHz, a Butterworth filter of
order 10 and cutoff frequency of 3.5kHz is used as an
anti-alias filter. The sound is then processed by the
analysis filterbank (a 256 channel FIR gammatone
filterbank) which frequency range is 100-3600 Hz.

e For the CSM: The channels are filtered through
the analysis filterbank and the CSM is generated
by computing the magnitude of the enhanced FF'T
[3], so that a 2-D map is generated: one of the di-
mensions is the cochlear channel number and the
other is the frequency bin of the enhanced FFT.

e For the CAM: One aspect of the nonlinearities
from the hair cells is partially modelised by com-
puting first the Hilbert transform and the envelope
of the cochlear channel outputs. Then, the CAM is
generated by computing the enhanced FFT as for
the CSM.

For the time being, the CAM/CSM selection is done
manually depending on the nature of the intruding
sound.

4 The neural network

The dynamics of the neurons we use are governed by
a modified version of the Van der Pol relaxation os-
cillator (Wang-Terman oscillators [4]). The state-space
equations for this dynamics can be found in [2].

Figure 2: The Two-Layer Neural Network. G: Stands for
global controller (the global controller for the first layer
is not shown on the figure). One long range connection
is shown in the figure.

The first layer is a partially connected network of re-
laxation oscillators [4]. Each neuron is connected to its
four neighbors. The CAM (or the CSM) is applied to the
input of the neurons. The first layer is two-dimensional.
Our observations have shown that the geometric inter-
pretation of pitch (ray distance criterion) is less clear
for the first 24 channels. For this reason, we have also
established long-range connections from ”clear” (high
frequency) zones to ”confusion” (low frequency) zones.
These connections exist only across the ”cochlear chan-
nel number” axis of the CAM. This architecture can
help the network to better extract harmonic patterns.

A weight normalisation technique described in [2]
is used for adapting wj; jxm between neuron;; and

neurony, ,. The weight adaptation is memoryless and
depends only on the actual value of the external inputs
to neurons [2]. This same weight adaptation is used
for ”long range clear to confusion zone” connections in
CAM processing case.

The second layer is an array of 256 neurons (one for
each channel). Each neuron receives the weighted sum
of the outputs of the first layer neurons along the fre-
quency axis of the CAM/CSM. In a modified version
of this architecture, we have already shown that multi-
plicative synapses can further enhance the segregation
performance of the network [11].

e For the CAM: Since the geometric (Euclidian) dis-
tance between rays (spectral maxima) is a function
of the pitch of the dominant source in a given chan-
nel, the weighted sum of the outputs of the first
layers along the frequency axis tells us about the
origin of the signal present in that channel.

e For the CSM: Highly localised energy bursts will be
enhanced by that representation.

The selection strategy at the output of the second layer
is based on temporal correlation [2]: Neurons belonging
to the same source synchronise with the same spiking
phase and neurons belonging to other sources desyn-
chronise with a different spiking phase.

5 Results

The utterance ”I willingly marry Marilyn” is mixed with
a siren noise (taken from Cooke’s database [12]). The
processing steps are as described in the previous sec-
tions. Since the siren is a narrowband noise and that we
are looking for energy bursts, CSM is used as front-end.
In the case of double-vowel segregation CAM is used (for
sound samples see [13]). In fact, for each experiment
both the CAM and the CSM are generated and applied
to the neural network. The selection between CSM and
CAM could be based on the SNR increase between the
original signal and the extracted signal. For now, this
is manually made. The spectrogram of the original mix-
ture, the extracted siren, and the extracted utterance
are shown in Fig. 3 and Fig. 4. The sound file and re-
sults for this example and other examples can be found
at [13]. Note the difference between results obtained by
the IIR gammatone filterbank in Fig. 5 and results ob-
tained by the proposed FIR gammatone filterbank in
Fig. 4. The incompleteness in sound separation in the
IIR case is due to the fact that sound separation is based
on spectral magnitude and not on phase, as explained
in 1.1.

6 Conclusion and Further Works

A bio-inspired sound source separation based on spik-
ing neural networks and FIR gammatone filterbank has
been proposed. The neural network chooses the channel

2065



I
(el
S
(=]

Frequency(Hz)

0 Time(s) 1.75

(e
"
[ B
.
.

Figure 3: Mixture of a siren and the sentence "I willingly
marry Marilyn”
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Figure 4: Results with the proposed 256-channel FIR
gammatone filterbank . Left: the spectrogram of the ex-
tracted siren. Right: the spectrogram of the utterance.

belonging to a source based on the synchronisation be-
tween corresponding second-layer neurons giving birth
to a cochleo-temporal mask. This mask is then used
to synthesise the extracted sound by using a near per-
fect reconstruction gammatone filterbank. We believe
that the qualitative and quantitative results we have ob-
tained from synthesis are very encouraging. More qual-
itative and quantitative experiments will be performed.
Top-down processing can be added to the bottom-up
processing proposed in this article by using the Oscilla-
tory Dynamic Link Matching (ODLM) [14]. The com-
putationally very efficient frequency-warped filterbank
as described in [15] can also be used as a replacement
to the gammatone filterbank. In another experiment,
we masked the output of the analysis filterbank before
performing the synthesis filtering. The musical noise is
greatly reduced, but a pink noise is then observed af-
ter synthesis. Non-binary masks with smooth transitions
must be used to reduce different types of noise.
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