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ABSTRACT

In this paper, we study the performance of reduced rank
Wiener filters in the context of downlink CDMA systems
corrupted by a frequency selective channel. For this, we
consider the output signal to interference plus noise ratio
(SINR), and study its convergence speed versus the order
of the receiver. Unfortunately, this is a difficult task be-
cause the SINR expressions depend on the spreading codes
allocated to the various users in a rather complicated way.
In order to be able to obtain positive results, we follow the
classical approach used for the first time in [12]: the code
matrix is modelled as the realization of a certain random
matrix, and the behavior of the SINRs is studied when the
spreading factor N and the number of users K converges to
400 in such a way that % — +4a. As the code matrices
used in the downlink of CDMA systems are very often or-
thogonal, we model the code matrix allocated to the various
users as a realization of a Haar distributed random unitary
matrix. In this context, we show that the SINR, of each or-
der n reduced rank receiver converge toward a deterministic
limit 3, independent of the spreading codes. In order to
study the performance of the receiver versus n, we therefore
study the convergence speed of 8, when n — +o0, a sim-
pler problem. For this, we use the results of [8] based on
the theory of orthogonal polynomials for the power moment
problem. We obtain the convergence rate of 3,, and exhibit
the parameters influencing the convergence speed.

1. INTRODUCTION

In multidimensional signal processing, it is often useful to
approximate the Wiener filter by a reduced rank version of
this filter. The latter acts on a projection of the received sig-
nal on a judiciously chosen small dimensional subspace. The
use of a reduced rank filter can be motivated by complexity
constraints or, in an adaptive setting, by fast convergence
requirements. It is then of major interest to quantify the
SNR loss at the output of this filter due to its non optimum
character.

The Krylov subspaces, widely used as projection subspaces,
will be considered in this paper. To fix our ideas, let us begin
with the generic signal model

yy =hyb+xy 1)

where yn is the received N X 1 signal, b is the unit-variance
scalar signal to be estimated and x is a signal decorrelated
with b representing interference and/or background noise .
The N x N covariance matrix of xy is denoted Ry,; and
will be assumed invertible. Recall that the MMSE receiver is
described by the equation symse = h%RI_\,Iy where Ry =
hNh]I\f + R,1 is the received signal yn covariance matrix.
This receiver will be called in the sequel the full rank MMSE
receiver. Its output SNR that we index by the number of

dimensions of the received signal is given by the standard
expression

Ny 1
where ™) is defined by
™) =h¥Ry'hy . (3)

The n'™ Krylov subspace associated to the pair (Rx,hxy)
is the subspace of CV spanned by the columns of K, y =
[hN,RNhN,...,RK,’th]. The n-th stage reduced rank
Wiener filter considered in this paper is the MMSE estimator
of b operating on the transformed signal y, v = KﬁNyN.
The motivation behind choosing the Krylov subspaces and
the implementation of the subsequent filters are discussed in
a number of works (see e.g. [6] and [4]).

The output SINR ﬁ,(LN) of the n-th stage reduced rank
Wiener filter is given by

(N) 777(zN>
Gy W
where 777(LN> is now defined by

-1
1N = hi K, x (K,’;’,NRNKn,N) K7 hy . (5)

The use of reduced rank Wiener filters is of course attrac-
tive if close to optimum performance can be achieved for
small values n. In order to precise in which contexts this
nice condition holds, the convergence speed of ﬂ,(LN) to BV,
or equivalently of 177(11\7) to 77<N) when n increases has to be
studied. This problem has been successfully addressed in
the recent work [6] (see also ([11], [10]) in the context of the
following simple CDMA transmission model

yvy = Wn kbr +vnN . (6)

bx = [bl,...,bK]T is the K x 1 symbol vector where K
is the number of users, Wy x is the N x K code matrix,
and vy is the classical noise with covariance matrix w?Iy.
The purpose is to estimate the symbol b, so this equation
appears as a particular case of (1) : if we partition W
and bK as WN,K = [WN UN’Kfﬂ and bK = [bl b?]T,
then we replace hy by wy and xy by Un,x-1br + vn.
Honig and Xiao ([6]) assumed that the code matrix W
is a random matrix with centered i.i.d. elements having
a variance of 1/N, and studied the performance of the
reduced rank filter in the "large system” regime where
N tends to infinity in such a way that K/N converges

toward a constant a. They established that n,(LN) and n(N )
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converge to finite limits 7, and 7, and were able to show
that 7 is a continued fraction expansion whose order n
truncation coincides with 7. From this, they concluded for
the rapid convergence of this SNR toward the full rank SNR.

Note that partial results have been obtained in more
general models than (6) (see [2] and [7]). In these works,

the convergence of ném toward 7, is established. However,
the convergence speed of 7, toward 7 is not addressed.

In [8], we also addressed the influence of n on the per-
formance of the receiver in the asymptotic regime when
N — 400, but in the much more general context defined by
model (1). Under the hypothesis that for each integer k,

s,(cN) =h¥R% hy converges when N — 400 to a finite limit

Sk, we showed that n(N ) and nT(LM also converge to certain
finite limits n and 7, respectively. More importantly, the
convergence speed of 7, toward n can be evaluated using
properties of certain orthogonal polynomials.

The purpose of this paper is to show that the results
of [8] can be used in order to study the convergence speed
of reduced rank Wiener filters in the context of downlink
CDMA systems corrupted by frequency selective channels.
This paper is organized as follows. We first recall in sec-
tion II the main results of [8]. In section III, we present the
downlink CDMA system model as well as the reduced rank
Wiener filters under consideration. The received data is cor-
rupted by a frequency selective channel, and the code matrix
is modelled as the realization of a orthogonal random Haar
distributed matrix. In section IV, we study the performance
of the above receivers in the asymptotic regime N and K
converge to oo in such a way that % — «. We show that
the hypotheses formulated in section II are valid, and deduce
the convergence speed of the reduced rank receivers.

2. A REVIEW OF THE MAIN RESULTS OF [8]
We still consider model 1 and formulate the following as-
sumption.

Assumption 1 We assume that for each k, SECN) =

h¥REhy converges when N — 400 to a finite limit sy,
and that sg = 1.

)

It is easily seen that 177(1N is equal to
N N N -1
Sg ) Sé ) e S; ) (N)
NEORINCY s, 80
N N . "
(sé ),...,37(1_)1 : : : : :
N) N () sl
Sn Spa1 o+ Sopli "
(7)
Assumption 1 thus implies that for each n, 777(1N>

converges to the quantity =,

ing (s;N))kzl,zn,l in (7) by sequence (Sk)k=1,2n-1-
Moreover, KfLI’NKn,N and Kf’NRNKn,N are positive
Hankel matrices converging to the Hankel matrices
(Sk+1)(k,0)=0,...,n—1 a0d (Sk4141)(k,1)=0,...,n—1. Therefore, ma-
trices (Sk41)(k,1)=0,....n—1 and (Sk+141)(k,1)=0,....n—1 are also
positive. Using well known results (see e.g. [1]), it exists a
probability measure o such that

obtained by replac-

Sk = / - Nedo(N). (8)

0
Assumption 2 Measure o is carried by an interval [01, 2],
and is thus uniquely defined by (8) (see [1]). Moreover, o s

absolutely continuous, and its density is almost surely strictly
positive on [01, d2].

absolutely continuous and is carried by an interval [61, 02]

Assumption 3 It ezists A > 0 and B > 0 such that
IRY'|I < A and |Ry|| < B for each N.

Under the above assumptions, n(N) = hNR]_\,th can be
shown to converge to n = || 5612 +do(X). Therefore, we have

to evaluate the convergence speed of

—1

S1 S2 . Sn
S0
So S3 Sn+1
77”:(807"'7Sn—1) :
Sn—1
Sn Sn+1l S2n—1

toward n = || 5512 +do(X). The main result of [8] is the follow-
ing theorem.

o1

1+
Theorem 1 Let > 1 and ¢ < 1 be defined by p = N gf
BEY)

Then, it exists 2 strictly positive con-

dop = —1—
and ¢ pt/ n2-1
stants C and D such that

O™ < (n—nn) < D™ (9)
for n large enough.

This results implies that the convergence is locally exponen-
tial, and that its rate only depends on the ratio g—;, and not

on the particular form of measure o. In particular,if g—; is

close from 0, then p is close to 1, and the convergence is
slow. If however g—; is close from 1, then p is large, and the
convergence is fast.

3. THE DOWNLINK CDMA MODEL.

We now show how to apply these results in order to evaluate
the convergence speed of reduced rank suboptimum Wiener
filters in the context of downlink CDMA systems. In this sec-
tion, we first present the downlink CDMA model. We denote
by N and K the spreading factor and the number of users
of the cell respectively, and by h(z) = zL:() hiz~" the trans-
fer function of the chip rate discrete-time equivalent channel
between the base station and the mobile station of interest.
h(z) is assumed to be known at the receiver side, and is
normalized in such a way that 37 |h|*> = 1. (d(m))mez
represents the chip sequence transmitted by the base sta-
tion. Therefore, the received signal (y(m))mez sampled at
the chip rate can be written as

y(m) = hid(m —1) + v(m)
=0

where v is an additive white noise of variance w?. We denote
by yn~(n) the N-dimensional vector defined by yn(n) =

(y(nN),...,y(nN + N —1))T. yn(n) can be written as

yn(n) = Ho nWy k(n)bk (n)+Hi NWn k (n—1)bx (n—1)+vy(n)

(10)
b (n) represents the vector of transmitted symbols at time
n, and we assume that the user of interest is user 1. Ho n
and H n are 2 Toeplitz band matrices depending on se-
quence (hi)i=o,...... Matrix W x(n) represents the code
matrix at time n. We denote wy(n) the first column of
Wa,k(n) (i.e. the code vector of the user of interest), and
by Un x-1(n) the orthogonal N x (K — 1) matrix such
that Wx x(n) = (wn(n),Un,k-1(n)). In the following,
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we study the performance of reduced rank Wiener filters in
the asymptotic regime N and K converge to 4oo in such
a way that % — «a where 0 < a < 1. It is important to
notice that the lenght L of the impulse response of the chan-
nel is assumed to be kept constant. Therefore, the inter-
symbol interference term Hi Wy x(n — 1) can be shown
to have no effect on the performance of our receivers. In
particular, the term Hi Wy x(n — 1) can be replaced by
H1i vW .k (n) without changing the asymptotic behavior of
the output SNRs of the receivers. We can therefore exchange
(10) with

y=HyxWnN sk +V (11)

Here, Hy is the circulant matrix Hy = Ho n + Hi ~, the
first column of which is vector hy defined by

hy = (ho,...,hr,0,...,0)".
This observation allows to simplify many further calcula-
tions. Note that we omit from now on the time index n
which is irrelevant.

We now explain how the random matrix Wy, g is gener-
ated. For this purpose, some notations and definitions need
to be introduced. Denote by U the multiplicative group of
N x N unitary matrices, and by Q a random N x N unitary
matrix. Q is said to be Haar distributed if the probability
distribution of Q is invariant by left multiplication by con-
stant unitary matrices. Since the group U is compact, this
condition is known to be equivalent to the invariance of the
probability distribution of Q by right multiplication by con-
stant unitary matrices. In order to generate Haar distributed
unitary random matrices, let X = [z; j]1<i j<n be a N x N
random matrix with independent complex Gaussian centered
unit variance entries. The unitary matrix X(X7X)~1/2 is
Haar distributed. Unless otherwise stated, it will be assumed
in the following that matrix Wy g is generated by extract-
ing K columns from a N x N Haar unitary random matrix

Q.

4. THE REDUCED RANK WIENER
RECEIVERS.

Model (11) coincides with model (1) for hy = Hywy and
Ry = HyvWy KWN KHN + w?I. The SINRs of the plain
Wiener filter and of the reduced rank Wiener filters are thus
given by formulas (2) to (5). Moreover, in order to study the
convergence speed of nﬁbN) to n(N ) in our asymptotic regime,
the results of section (2) can be used provided assumptions
1 to 3 hold.

In order to check assumption 1, we observe that
s,(cN) is given by S,EN) = WﬁHﬁ(HNWN,KWﬁyKH% +
W I*Hywy. Using the properties of the Haar distribution,
it can be shown as in [3] that sk
behavior that the term

) has the same asymptotic

1
ETrace(Wﬁ,KHZ(HNWN,KW{%,KH% +w’ "HN W i)

(12)
Denote by  ( )\l< N) )i=1,...N  the eigenvalues  of
HNWN’KW%,KH%. Then, (12) is equal to

* D AT W),

In order to precise the asymptotic behavior of this
term when N — 400 and K/N — «, we first note that
the eigenvalue distributions of matrices WN7KW]I\§, x and
Hn7Hy converge toward two probability distributions de-
noted v and p respectively. It is clear that dv(t) = ad(t —
1) + (1 — a)d(t). In order to precise the behavior of p,

we remark that the eigenvalues of HEHy coincide with

(|h(e*™ /N ?)1=0... .N_1. Therefore, u is carried by the in-
terval Hhmzn‘Qa ‘hmaac|2] where |hm1n‘ = minf |h(e2“rf)‘ and
|hmaz| = maxy [h(e*™7)|, and is defined by [ ¢(t)du(t) =

Iy ¢(IR(e* ™)) df .

As matrices WNJ(WﬁK and HnTHpy are almost
surely asymptotically free (see [3], [5]), the eigenvalue dis-
tribution of matrix HNWN’KW%’KH]HV converges toward a
probability measure, denoted p ® v, called the free multi-
plicative convolution product of p and v. This implies that

o =2 [t s (13

N—+o00,K/N—a

We note sk the above limit. This shows that assumption 1
holds.

Assumption 3 is obviously satisfied. We now verify as-
sumption 2. We first note that 0 is eigenvalue of ma-
trix HyWy KWN «HY with multiplicity N — K. The re-
maining elgenvalues are strictly positive, and coincide with
the eigenvalues of matrix WJP\‘;’KHNHHNWMK. Therefore,
measure du®v(t) can be written as du®v(t) = (1—«a)d(t) +
adry(t) where dvy(t) represents the limit eigenvalue distribu-
tion of WﬁKHNHHNWN,K. It can be checked that dvy(t)
is absolutely continuous, and that its density is almost surely
strictly positive on a certain interval [z1, z2]. It is clear that
the eigenvalues of W%’KHNHHNWN,K are contained in the
interval [|Amin|?, |hmaz|?] for each N and K. Therefore, the
interval [z1, z2] is itself contained in Hhmm|2, |hmaz\2}.

In order to complete the verification of assumption 2, we
remark that s can be written as sx = f;f t(t + w?)*dy(2),
or equivalently

To+w
Sk = / A — WA dy(A — w?)

1+w?

This shows that measure o defined by s = [Ado()) is
given by
do(\) = (A — w?)dy(A — w?) (14)
As dv(t) is compactly supported and absolutely continuous,
so is 0. Moreover, the support of ¢ is the interval [d1, 2]
where §; = 21 + w? and 8y = x2 + wz, and its density is
almost surely strictly positive on [d1, d2].
As assumptions 1 to 3 hold, the results of [8] can be
applied. It turns out that the convergence speed of n,, toward
2
7 is exponential, and depends on factor %: if this ratio
is close from 1, the convergence is fast, while if it is close from
0, the convergence is slow. In order to discuss this point, we
assume that the effect of w? on the ratio is negligible. The

important term is thus %, which depends both on « and
To—xT1

It is clear that the ratio —=2—T1——
! ) [hmaa]? —[hminl
increases from 0 to 1 when « increases from 0 to 1. Moreover,

[hmin|? and |Amaz |*.

s -
one can expect that the condition number l‘h"’% also affects
maz
z1

75 In order to be able to understand the influence of o
and (|Rmin|?, |Rmaz|?) on (z1,22), we mention that z; and
x2 can be evaluated numerically rather easily. For this, we
denote by G,(z) the Stieljes transform of dvy(t) defined by

f“ d’*(t). For each z € C —

— [z1,z2], Gy(z) can be

shown to satlsfy the equation a(l + 2G4 (2)) = T(z,G~(z))
where T'(z, g) is defined by
1 2im (2
[h(e™™ )
T(z,9) = _ 15
(2,9) /0 |h(e2imf)|2 — 2 + 1;ga (15)
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Moreover, x; is the unique positive real number for which it
exists g1 > 0 satifying

a(l+z191) = T(21,0)
oT
ary = 3—g(9€1791) (16)

x2 is characterized similarly, but the corresponding value g2
is strictly negative. This result will be used more extensively
in a forthcoming paper.

We now illustrate the influence of « and
(|hmin|?, |Rmaz|?) on the convergence speed of 3, = T
toward § = .. For this, we represent in the following

figures the relative SINR defined as the ratio % In figure

1, we first study the influence of o on the convergence speed
of the relative SINR toward 1. Here, the ratio f,—g is equal
to 10 dB. This figure confirms that the convergence speed
of the reduced rank receivers depends crucially on the load

factor.

0.8 /- B a

0.7 +

Relative SINR

04l —

03 L L L I I
Rank n

Figure 1: Influence of «

In figure 2, we study the effect of the channel on the
convergence speed of (3,, toward 3. For this, we consider a 2
taps channel with transfer function h(z) = h1 + hez™t. In
this case, if |hi| = |h2|, h(2) has a zero on the unit circle, so
that |hmin| = 0. If [hi| = |ha|, the convergence speed of 3,
toward ( is thus expected to be minimum. This is confirmed
by 4 obtained for a = % and ﬁ—g = 17dB.

o= |h,P=h, 7
2. 2
— |h,P=2ln, |
—a |h,[’=5lh,° 4
2. 2
—a— |h, P8,

Relative SINR

Rank n

Figure 2: Influence of the channel

We finally verify that our asymptotic SINR evaluations
allow to predict the empirical performance of the studied
receivers. For this, we have compared the measured bit error
rate with its asymptotic evaluation given by Q(+/B.) (we
have used a QAM4 constellation). The resuts are presented
in figure 3. Here, the propagation channel is the so-called
Vehicular A (on each frame, a different realization of the

channel is generated). The signal to noise ratio z}% is equal to

7dB and the load factor « is equal to % Figure 3 shows that
our asymptotic evaluations allow to predict rather accurately
the performance of the true system if N > 128. However,
for smaller values of N, the asymptotic performance is too
optimistic. We finally note that the receiver we implemented
is based on the correct model (10), thus showing that the
approximation (11) used in order to derive the asymptotic
performance is justified in the context of the vehicular A
channel

— N=256,K=128
— Asymptotic
0 — — N=128,K=64
< | o= N=64,K=32

BER

102 L L L L L
1 1.5 2 25 3 35 4

Rank n

Figure 3: Comparison of empirical and theoretical BER
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