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ABSTRACT

In this paper we present a method for estimation of the Shannon
differential entropy that accounts for embedded manifolds and is
based on high-rate quantization theory. It forms an extension of the
classical nearest-neighbor entropy estimator and provides simulta-
neously an explicit estimate of the manifold dimension. A clear ad-
vantage of our method over existing methods is that it estimates the
more meaningful Shannon entropy rather than the Renyi entropy.
Through experiments we confirm the power and the usefulness of
our proposed scheme.

1. INTRODUCTION

Accurate estimation of information-theoretical entities such as the
entropy and the mutual information is of great importance for the
design and operation of applications in areas such as source coding
and pattern recognition. In source coding the entropy of a variable
provides bounds on the average code length needed for encoding,
and in pattern recognition the shared information between features
and classes provides insight into the expected classification perfor-
mance.

The most common methods for entropy estimation are the so-
called density plug-in estimators. These methods first estimate
the underlying probability density function (pdf) or probability
mass function (pmf) and then simply insert the density estimate
into the information-theoretical expressions and perform the (multi-
dimensional) integration. For applications where plug-in entropy
estimators have been used see for instance [1, 2, 3]. It is well known
that density estimation is a complex and delicate problem, which
involves issues such as bin-width selection for histogram methods,
and kernel-type and number of components for methods based on
mixture models. These problems are avoided by entropy estimators
that utilize the data directly for the entropy estimation without the
intermediate step of density estimation. We mention in this cate-
gory are the m-spacing estimator (based on order statistics) [4], its
multidimensional extension [5], the Renyi! entropy estimator based
on minimum spanning trees [6], and the nearest-neighbor (NN) en-
tropy estimator [7]. For an overview of entropy estimators see [8].

It is common that random data vectors of high dimension are
in fact located on a lower-dimensional manifold?> embedded in the
high-dimensional space. This has been observed in various areas
such as for instance vision and speech [9]. The possible manifold
structure of the data is often overlooked in entropy estimation, re-
sulting in that classical methods, assuming the wrong intrinsic di-
mension (manifold dimension), are giving erroneous estimates of
the entropy. Moreover, many of the plug-in methods are not capa-
ble of handling dirac functions (in the probability density function)
that occur locally due to the manifold structure. Thus, generaliza-
tions of the classical entropy estimators that also handle manifolds
are of interest.

The Renyi entropy (or c-entropy) given a probability density function
fx(x) is defined as hy (X) = ﬁ log, (fo S (x) dx) bits.
2Locally Euclidean topological space.

Recently, methods for estimating the Renyi-entropy of data lo-
cated on manifolds have been presented [10, 11]. The method in
[10] is based on the construction of so-called geodesic minimal
spanning trees obtained from pruning of the ISOMAP produced by
the algorithm in [9]. In [11] the same authors reduce the complexity
of their previous method by using k-nearest neighbor graphs instead
of the geodesic minimal spanning trees.

The motivation behind our work is that, in contrast to the meth-
ods in [10] and [11], we want an estimator that directly estimates
the, by far more common, Shannon differential entropy of random
data vectors located on a manifold, rather than the Renyi differen-
tial entropy. The Shannon differential entropy can then easily be
used to find bounds (e.g., Shannon lower bound) on the average bit
rate required for the encoding of a variable at particular distortion.
Moreover, the estimator of [10] needs the output of [9], whereas
our estimator of the manifold dimension and differential entropy is
based on averaging of nearest-neighbor distances between random
points in the logarithm domain [7]. This makes the structure of our
differential entropy estimator clear, simple and easy to implement.
Similar to [10] and [11], we simultaneously estimate both the man-
ifold dimension and the differential entropy of the data located on
the manifold.

The remainder of this paper is organized as follows. In section 2
we present our entropy estimator for data vectors located on mani-
folds. Section 3 shows some results for both toy and real examples,
and section 4 is devoted to the conclusions.

2. ENTROPY ESTIMATION

In this work we are interested in estimating the differential entropy
of a set of random data vectors that lie on a d-dimensional manifold
embedded in RY (d < d). Let X be a continuous stochastic vari-
able (s.v.) in R? with a pdf fx(x). Then the (Shannon) differential
entropy of X is defined as

W) == [ freo)togs (fr(x)) d. 1)

In the following we assume that we have access to a set of N inde-
pendent identically distributed (i.i.d.) vectors {xn}nNzlA

2.1 Entropy estimator based on high-rate quantization theory

Our derivation of the nearest-neighbor based entropy estimator re-
lies on high-rate theory for constrained resolution vector quantiza-
tion (VQ). In the design of a constrained resolution VQ operating at
high-rate we seek the distribution of quantization points (centroids),
gc(x), that minimizes the total average distortion (per dimension),
D, given a fixed number of centroids ([ps gx(x)dx = N). The av-
erage distortion for a nearest-neighbor quantizer at a given power
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distortion r is defined as
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where xp, denotes the nearest-neighbor quantization point to x,,. It
is important to note that, in (2), we use the data vectors x both as
observations and quantization points. Furthermore, using the cen-
troid distribution g¢(x), the average distortion can be approximated
as [12]

D, % Cld Gop) [ fr(x)egc(v)F d, )

where C(r,d, ¥, Jopt) Tepresents the coefficient of quantization, which,
for a cell of volume V with optimal cell shape %, is defined as

C(rd Do) = / lell dx. )

Using variational calculus, the minimization of the average
distortion in (3) under the constrained resolution constraint
Jra gx (x)dx = N is straightforward, and the resulting optimal cen-
troid distribution becomes [13]

S

e (x) d+r
gc(x) =N I (5)

Jra S (x) 3o dx

which when inserted into (3) yields
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Taking the logarithm of both sides of (6) and rearranging the
terms we identify the Renyi (o-) entropy to be

1
ha(X) = 1 log (/g fX ) dx) 7
X
1LyN 1
1 N Znei g llenlr
~1 N 1 i
og (N)+ 1— °g2< Cnd Yop) )’

where o = d/(d + r), and where we have inserted the average
nearest-neighbor expression in (2) for the average distortion D,.
The Renyi entropy converges to the Shannon entropy as o goes to
one, i.e., h(X) = limy_,1 hg (X). Generally, we are interested in the
Shannon entropy rather than the Renyi entropy and, therefore, we
develop (7) under the assumption that the distortion power r is small
relative to d (which in turn implies that o is close to one). For small
r, the logarithm of the average distortion can be approximated by
average of the logarithm of the nearest-neighbor distances. When
applied to (7) gives an expression of the Shannon differential en-

tropy

N
h(X) Z log, (Il en [I1)

T logs (N) + logs ((ci C(nd, %p»)*’f") L ®

where we twice have used that log(x) ~x — 1 when x is close to one.
The last term of equation (8) can be seen as compensation for the
implicit hyper-cube quantizer cell shape that is built into the differ-

ential entropy® and the actual cell shape imposed by the quantizer

3The expression 4(X) ~ H(X) + dlog, (A) relates the differential en-
tropy of X to the entropy H(X) through uniform scalar quantizers (dimen-
sion d). The approximation is only valid when the quantization stepsize A is
small compared to the smoothness of the pdf of X.

used. In the following we will use random codebooks, i.e., code-
books (set of quantization points) generated by random selection of
anumber of points from the data set. Worth noting here is that, since
the power-distortion r is very small, the optimal quantization point
distribution for the constrained resolution quantizer coincides with
the distribution of the data, i.e., gc(x) &~ N - fx(x). Inserting the
coefficient of quantization for random codebooks (and high-rate),
derived by Zador [12], into (8) results in

h(X)

Q

N
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where I'(-) represents the gamma function, and where V; denotes
the volume of a d-dimensional sphere of unit radius
a2
T
Vi=——. 10
1= Py o

In our work we allow the manifold dimension d to be fractional and
therefore, since the factorial operation is only defined for integers,
we use [14]

d d 1 5
log, (V) = logz (Zn ) ) log, (dr) — e, (11)

where the error-term € is bounded as 0 < € < lo%l@.

Taking the limit of (9) as r goes to zero we arrive at a final
expression for the Shannon differential entropy (in bits)

1 N
= NZ og; (|| en [11) +1logy (N)

y d d 1 N
—%og, [ L) = Zlog, (d 12
tlog,2) 2082 (2ne) Zlog (dm),  (12)

where y = 0.5772 is the Euler constant, and where we have set the
e-term in (11) to zero. The expression for the entropy estimator in
(12) is similar to the estimator in [7] with the difference that (12)
does not assume an integer dimension.

2.2 Joint estimation of manifold dimension and entropy

Estimation of the manifold dimension and the differential entropy
can be done simultaneously using random codebooks. Starting with
the final expression for the Shannon differential entropy (12) we
note that the differential entropy itself can be seen as a constant that
we can combine with the last three terms on the right-hand side of
(12) into a new constant x, i.e.,

1/ y . d d 1 ;

Equation 12 can then be rewritten as

1
—5log (M) + %, (14

= log, (He M, Hl) =
Nn:l M

where N denotes the number of observations used for the averag-
ing and || e,y || represents the distance between a random obser-
vation x, and its nearest neighbor in a random codebook of size
My. The random codebook is formed by randomly selected vec-
tors from the observation set. Using the average of the logarithm
of nearest-neighbor distance for K different codebook sizes My,
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(k=11,...,K]), we can easily find the least-squares estimate of the
manifold dimension d and the constant x, i.e.,

_1 N I
@:( R, ):(MTM> e, (15)
where,
= {bgzl(Ml) InggMK) }T7 (16)
1 N
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Given the estimates of d and K the estimate of the differential en-
tropy is easily obtained from (13).

3. EXPERIMENTS AND RESULTS

In this section we consider two different experiments where we ap-
ply our method for the simultaneous estimation of the manifold di-
mension and the Shannon differential entropy. The first experiment
is purely a toy experiment, where both the true manifold dimension
and the differential entropy are known. In the second, real-world,
experiment we consider a problem that is relevant for the compres-
sion of speech. In particular we investigate the manifold dimensions
and differential entropies of narrowband speech spectral envelope
(of 20 ms non-overlapping segments of speech sampled at 7 kHz).

3.1 Toy experiment: Swiss roll

Consider that we have access to N random vectors in R> that are
located on a two-dimensional manifold embedded in this three-
dimensional space. In our setup we generate the data points for
the ”Swiss roll” manifold by creating the coordinate vector ¥ =
[@cos(@), @sin(@),p], where @ and p are uniformly distributed
random numbers within the intervals [27x,...,4x] and [0,...,10],
respectively. The true differential entropy of the two-dimensional
manifold is 9.22 bits (with two digits precision). Figure 1 depicts
the structure of the Swiss roll manifold. For the experiment we

Figure 1: Shows the structure of the manifold used for the toy experiment.
The true differential entropy for the uniformly distributed data over the man-
ifold was calculated to be 9.22 bits.

set the number of available observations to N = 1000, the number
of nearest-neighbors for averaging N = 250, and K = 50 random
codebooks ranging from M; = 27 to Msy = 2° in size. Figure 2
shows the average distortion %Z{Ll log, (H €M, H) as a function

of the codebook size log, (M} for one run of the Swiss roll exper-
iment. The line in Figure 2 displays the least-squares fit using (15)

Average distortion

75

8
Codebook size [bits]

Figure 2:
]%/fozllogz (Il iy ||) for each corresponding codebook size log, (M),
and the line shows the least-squares fit to these points. The slope of the
line is inversely proportional to the manifold dimension (with a minus sign),
and the differential entropy can be computed from the intersection of the
line and the average distortion axis at the codebook size of zero bits.

The points in the graph show the average distortion

resulting in d = 2.04 as an estimate of the manifold dimension and
h(X) = 9.36 bits for the differential entropy, with the true values
being 2 and 9.22 bits, respectively. Repeating the experiment 100
times we get with 99% confidence that the manifold dimension is
1.96 +0.02 and the differential entropy is 9.38 £0.01. The bias that
we observe in this example comes to a large extent from the fact that
we have neglected the e-term in (11). However, this effect becomes
increasingly less prominent with increasing manifold dimensional-
ity. In the example above, the e-term is approximately equal to
0.12, which would then result in a differential entropy estimate of
9.26 £0.01 bits. Experiments with larger codebooks (than 9 bits)
indicate that the remaining small bias in the estimates of manifold
dimension and differential entropy can most likely be related to the
validity of the high-rate assumption.

3.2 Real experiment: cepstral coefficients of speech

In this experiment we investigate the manifold dimensions and dif-
ferential entropies of narrowband speech linear prediction coeffi-
cients (LPC) represented by cepstral coefficients (CC). One rea-
sons for using the cepstral coefficients is that the squared error
between cepstral vectors approximates the spectral distortion [15],
which provides an indication of the distortion we perceive. We used
speech from the NTT-AT database, which comprises speech from a
wide range of different languages and speakers, for the generation
of the data set. The speech was first bandpass filtered (pass-band
between 300 and 3400 Hz) and then downsampled to a sampling
frequency of 7 kHz. Tenth-order linear-prediction analysis was per-
formed on hamming windowed 20 ms segments with no overlap.
A simple voice activity detector was used to discard non-speech
frames, and finally the LPCs were transformed into CCs. The total
data set consisted of 2.75 - 10° vectors.

Let X denote the s.v. of narrow-band CCs. We then estimate the
differential entropy /4(X) and manifold dimensionality from the data
set. For the experiment we set the numbers of nearest-neighbors for
the averaging to N = 1000, and the K = 15 random codebooks we
use ranges in size from M; = 2'% to M5 = 2'7. Figure 3 shows
one typical run of the experiment, which clearly confirms the lin-
ear relationship assumed in (14). We repeat the experiment 10
times, which yields, with 95% confidence, an estimated manifold
dimension of 8.12 £ 0.12 and differential entropy of 1.91 £0.26
bits. Thus, the narrowband speech CCs are located on an approx-
imately 8-dimensional manifold embedded in the 10-dimensional
Euclidean space. The differential entropy as such does not provide
any insight into the lossy compression. To quantify the result we re-
late the differential entropy to a lower bound on the average bit rate
for a given average distortion D. The Shannon lower bound (SLB)
[16] is a lower bound on the minimum rate possible to encode a
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Average distortion
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Figure 3: The points represent pairs of average distortion (with N = 1000)
and codebook size for the 10-dimensional cepstral coefficient vectors of nar-
rowband speech. The line shows the least-squares fit to the points corre-
sponding to codebook sizes of 12 bits and larger, which results in d = 8.14
as an estimate of the manifold dimension and 4(X) = 1.90 bits for the dif-
ferential entropy.

variable at a given distortion and can be defined as

Ry s.B(D) = h(X)—
sup h(W), (18)
2
Ui 00 oy S O0) 3w} (PL8eli0) )y

where W = X — X denotes the quantization noise of X (X denotes
the reconstruction point), § (w) is the single-letter squared error dis-
tortion, and both the rate and the distortion are defined on a per-
frame basis. Since X is represented by cepstral coefficients, D ap-
proximates the root-mean-squared (RMS) log spectral distortion.
The supremum of the differential entropy in (18) results in a multi-
variate Gaussian distribution (with a diagonal covariance matrix) of
the quantization noise, and the Shannon lower bound becomes

7 2
Ry s15(D) = h(X) ~ & log, (261’” (Zrel®) ) (19)

where d is the manifold dimension of X. Inserting our estimates of
the manifold dimension and differential entropy into (19) we can
compute the lower bound on the minimum average bit rate required
to achieve an average distortion D. This is displayed in Figure 4 for
the typical distortion range of interest. Generally, it is considered
that we get non-audible distortion if the RMS log-spectral distortion
is less than 1 dB*. From Figure 4 we extract that on average at
least 19 bits (per 20 ms block) are required to achieve 1 dB average
distortion. This estimate seems reasonable considering that systems
exist that reach this distortion level at a rates between 20-22 bits per
block [17, 18].

4. CONCLUSIONS

In this work we first derived the nearest-neighbor entropy quantizer
based on theory for high-rate constrained-resolution vector quanti-
zation. We have extended the entropy estimator to jointly estimate
the dimensionality and differential entropy of random data located
on embedded manifolds. In contrast to existing algorithms [10, 11]
we estimate the more meaningful Shannon differential entropy in-
stead of the Renyi entropy. In an experiment on spectrum quanti-
zation we showed a practical use of our method, where we found a
lower bound on the minimum bit rate required for transparent quan-
tization (non-audible distortions) equal to 19 bits. This estimate
is consistent with bit rates for transparent quantization reported by
other researchers [17, 18].

4 Additional constraints on the maximum allowed percentage of outliers
are not considered in this work.

D [dB]

Figure 4: Shannon lower bound of the narrowband rate, in bits per frame,
as a function of the root-mean-square log spectral distortion.
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