
A ROBUST METHOD FOR CAMERA CALIBRATION AND 3-D RECONSTRUCTION
FOR STEREO VISION SYSTEMS

Lenildo C. Silva, Mariane R. Petraglia, Antonio Petraglia

PEE/COPPE-EE, Federal University of Rio de Janeiro
CP 68504, CEP 21945-970, Rio de Janeiro, RJ, Brazil

{lenildo, mariane, petra}@pads.ufrj.br

ABSTRACT

This work presents a camera calibration procedure for a
stereo vision system to be applied in visual inspection ac-
tivities involving the three-dimensional reconstruction of
a scene. The presented procedure encompasses a robust
method developed for solving the non-linear least-squares
problems encountered, in order to obtain the global solution,
and hence achieve the smallest error in estimating the param-
eters of the exterior orientation of the camera system. Stem-
ming from the theoretical analysis of the camera orientation
problem, the development of the robust method entailed a
combination of optimization techniques. Experiments with
real images were performed to verify the robustness of the
proposed approach.

1. INTRODUCTION

One of the most interesting applications of stereo vision is 3-
D reconstruction, when three-dimensional information of a
point in a scene is recovered from two or more views of that
scene. This information can be presented in different forms
(e.g. 3-D coordinates, discrete measures, angles, etc), that
can be estimated by applying stereophotogrammetric tech-
niques. Stereophotogrammetry includes a set of techniques
from which inferences can be made about the position and
orientation of a 3-D object, given its 2-D projections in each
image of a stereo pair.

Camera calibration is an important stage in the 3-D re-
construction procedure. It comprises two main tasks: the
estimation of the parameters that determine the relation be-
tween the scene and its projection in the camera plane, and
the estimation of the internal parameters of the camera, re-
ferred respectively as exterior and interior orientation param-
eters. The exterior orientation procedure consists of estimat-
ing the rotation and translation that relates the camera refer-
ence frame to the world (or object) reference frame, and can
be represented by a set of six parameters: three translation
parameters and three rotation angles. The interior orientation
procedure consists of estimating a set of internal parameters
that control the projection of a 3-D point in the 2-D plane, in-
dependently on the position and orientation of the observed
scene. The parameters to be estimated are the coordinates
of the principal point, the parameters related to the focal dis-
tance, and the parameters that model the geometric distortion
introduced by the camera lenses.

Several methodologies have been applied to determine
the exterior and interior orientation parameters, using lin-
ear and/or non-linear methods. Linear methods have the ad-
vantage of low computational cost, but are very sensitive to
noise [1]. On the other hand, non-linear methods require

an approximate initial estimate to guarantee global conver-
gence. In [2] the exterior and interior orientation parame-
ters are estimated linearly, applying projective geometry con-
cepts. In [3] a linear approach for the solution of the exterior
orientation problem using a series of linear combinations and
constraints is developed to estimate the unknown rotation and
translation parameters. In [4] a set of analytical photogram-
metric formulas is presented for the solution of the orienta-
tion problems described by non-linear least-squares methods,
and solved iteratively from a given approximate initial solu-
tion. In [1] the exterior and interior orientation parameters
are estimated by a non-linear procedure that also considers
distortion effects introduced by the camera lenses. In [5] a
least-squares methodology is proposed for the on-line deter-
mination of the exterior orientation using a backprojection
algorithm and weak-perspective scheme for the initial esti-
mation.

In the present paper a robust method is advanced for the
estimation of the exterior orientation parameters, incorpo-
rating various minimization techniques based in non-linear
least-squares algorithms. The initial estimate is provided by
a linear method derived from the projective geometry theory.

2. 3-D RECONSTRUCTION

The relation between a given point [x y z]T in the world refer-
ence frame and the corresponding point [p q s]T in the camera
reference frame can be established by a translation followed
by a sequence of three rotations:

[

p
q
s

]

= R(ω ,φ ,κ)

[

x− x0
y− y0
z− z0

]

(1)

where t = [x0 y0 z0]
T is the translation vector, and R(ω ,φ ,κ)

is the rotation matrix. From this representation of the 3-D
point in the camera reference frame, it is obtained the respec-
tive 2-D projection in the image plane, whose coordinates
can be written as

[

u
v

]

=

[

u0
v0

]

+
f
s

[

p
q

]

(2)

where f is the distance of the image plane to the camera lens,
being related to the focal distance, and [u0 v0]

T are the coor-
dinates of the principal point. From (1) and (2) we obtain

x− x0

z− z0
=

r11(u−u0)+ r21(v− v0)+ r31 f
r13(u−u0)+ r23(v− v0)+ r33 f

(3)

y− y0

z− z0
=

r12(u−u0)+ r22(v− v0)+ r32 f
r13(u−u0)+ r23(v− v0)+ r33 f

(4)
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Figure 1: World and camera reference frames.

These equations show that the relation between the 3-D and
2-D coordinates is a function of f , u0, v0, x0, y0, z0, ω , φ , κ ,
which can be determined through a non-linear least-squares
technique.

3. NON-LINEAR LEAST-SQUARES METHOD

To estimate the exterior orientation, N 3-D points [xn yn zn]
T,

n = 1, . . . ,N, with known positions in the world reference
frame, are employed with the purpose of finding the un-
known rotation and translation parameters that position the
camera reference frame on the world reference frame [4, 6].
This can be formulated as a non-linear least-squares problem,
which can be solved by starting from an approximate initial
solution around which a linear model is produced, and then
adjusting iteratively partial solutions until a given stopping
criterion is achieved.

Adopting the cost function F = εTε, where ε = γ∗−γ is
the error vector, γ∗ = [u1 v1 · · · uN vN ]T contains the known
image points and γ is the estimate of γ∗, being a function
of the exterior orientation parameters β = [x0 y0 z0 ω φ κ ]T,
then these parameters can be obtained through the recursion

β`+1 = β` +∆β` (5)

whose linearization around the solution at iteration ` yields

A`∆β` = ε` (6)

where A` is the N×N Jacobian matrix [4], and ε` is the error
vector with image points estimated through Eqs. (1) and (2)
using the parameters β`. The least-square solution of Eq. 6
is

∆β` = [(A`)TA`]−1(A`)T(γ∗ −γ`) (7)

The interior orientation is determined by the camera con-
stant f (a known parameter related to the focal distance), by
the coordinates of the principal point [u0 v0]

T and by the lens
distortion characteristics.

If a good initial estimate can be provided, then the con-
vergence of the above least-squares algorithm will be rapidly
reached, although convergence cannot be guaranteed. In
Eq. (7) the estimation of ∆β requires the inversion of the
matrix ATA, which is usually ill-conditioned. To eliminate
this problem, the Levenberg–Marquardt method [7, 8] was
here applied, by adding a factor λ to the diagonal elements
of ATA, so that a feasible condition number for this ma-
trix could be achieved. The value of λ was adjusted at ev-
ery iteration to accommodate variations of the cost function
F = εTε, as follows. At each iteration, F `+1 was evaluated

and compared with F `. If F`+1 ≥ F` the value of λ` was in-
creased, and the iteration was again executed until F `+1 < F`

was reached. Accordingly, Eq. (7) was modified as:

∆β` = [(AT)`A` +λ`I]
−1(AT)`(γ∗ −γ`) (8)

The vector ∆β is composed of variations of the trans-
lation parameters x0, y0 and z0, given in meters, and of the
rotation parameters ω , φ , and κ , given in radians. Such
differences in scale and magnitude can again cause ill-
conditioning in the least-squares procedure. This difficulty
was alleviated by using the Sparse Levenberg–Marquardt ap-
proach [7], to partition the parameter vector into two sub-
vectors βt and βr, containing the translation and rotation pa-
rameters, respectively. The updating vector ∆β was also
partitioned into two sub-vectors, ∆βt and ∆βr, computed
separately at each iteration.

Another important change was introduced in Eq. (5).
Since large values of the elements of ∆β might lead to local
minima or even to divergence, a factor α` was introduced,
such that

β`+1 = β` +α`∆β` (9)

This factor could be held constant in all iterations, but better
results were obtained by using a variable step size, modified
at each iteration according to the Armijo rules [8], that is:
1. F`+1 ≤ F` +ρ1α`(g

T)`∆β, for some 0 < ρ1 ≤ 1
2. (gT)`+1∆β` ≤ ρ2(g

T)`∆β, for some ρ1 < ρ2 ≤ 1
where g = 2ATε is the gradient vector of F . The value of α`

was chosen according to ρ1α` ≤ α`+1 ≤ ρ2α`.

4. LINEAR METHOD

To guarantee a fast convergence of the exterior orientation
computation, an approximate initial solution of the non-
linear least-squares algorithm is needed. This can be accom-
plished by using a linear method derived from the projective
geometry theory. Although usually sensitive to measurement
noise, as shown later in Section 6.1, this linear method pro-
vides good initial estimates for the exterior and interior orien-
tation parameters, also called extrinsic and intrinsic parame-
ters, respectively.

A point in the 3-D space can be linearly related to its 2-D
projection in the image plane as [2]

m = PM (10)

where m = [U,V,S]T and M = [X ,Y,Z,T ]T are, respectively,
the projective coordinates of the 2-D and 3-D points. Eq. (10)
is termed projective, because it is defined up to a scale factor
(S and T in the above vectors). The matrix P is the so-called
perspective projection matrix, and contains implicitly all the
extrinsic and intrinsic parameters. The general form of P is

P =

[ αur1 +u0r3 αutx +u0tz
αvr2 + v0r3 αvty + v0tz

r3 tz

]

(11)

The six extrinsic parameters are then obtained from the trans-
lation vector t = [tx ty tz]T and the rotation matrix R =
[r1 r2 r3]

T, and used as a starting point of the least-squares re-
cursions for the computation of the exterior orientation. The
intrinsic parameters αu, αv (the focal distance in horizontal
and vertical pixels), u0 and v0 are also needed for the exterior
orientation computation.
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Figure 2: Stereo image pair used in the experiments.

Table 1: Experimental results for different numbers of points N.

N = 32 N = 24 N = 16 N = 12 N = 8
SEGMENT REAL

ESTIM. ERROR ESTIM. ERROR ESTIM. ERROR ESTIM. ERROR ESTIM. ERROR
AB 0.250000 0.248528 0.589 % 0.248227 0.709 % 0.248371 0.652 % 0.248158 0.737 % 0.249280 0.288 %
CG 0.150000 0.150711 0.474 % 0.150676 0.451 % 0.150604 0.403 % 0.150348 0.232 % 0.150485 0.323 %
AD 0.367696 0.365426 0.617 % 0.365520 0.592 % 0.366815 0.239 % 0.366826 0.236 % 0.367693 0.001 %
AC 0.260192 0.259616 0.222 % 0.259334 0.330 % 0.259318 0.336 % 0.259296 0.344 % 0.260563 0.143 %
IJ 0.150000 0.150001 0.001 % 0.149972 0.018 % 0.150171 0.114 % 0.150056 0.038 % 0.150541 0.361 %

IM 0.050000 0.049368 1.265 % 0.049438 1.124 % 0.049689 0.623 % 0.049559 0.883 % 0.049268 1.465 %
IL 0.296985 0.297575 0.199 % 0.297779 0.268 % 0.297993 0.339 % 0.298160 0.396 % 0.299027 0.688 %
IK 0.218403 0.221105 1.237 % 0.221138 1.252 % 0.220537 0.977 % 0.221117 1.243 % 0.222364 1.813 %
SW 0.150000 0.150334 0.223 % 0.150388 0.259 % 0.150683 0.456 % 0.150452 0.301 % 0.150414 0.276 %
TX 0.150000 0.151667 1.111 % 0.152098 1.399 % 0.153756 2.504 % 0.153531 2.354 % 0.152791 1.861 %
QT 0.296985 0.298202 0.410 % 0.298064 0.363 % 0.298585 0.539 % 0.298513 0.515 % 0.299620 0.887 %
QS 0.218403 0.217975 0.196 % 0.217751 0.299 % 0.217140 0.578 % 0.217568 0.383 % 0.218968 0.258 %
ab 0.050000 0.049500 1.001 % 0.049532 0.935 % 0.049654 0.691 % 0.049705 0.591 % 0.049929 0.142 %
Yc 0.050000 0.050357 0.713 % 0.050407 0.813 % 0.050603 1.206 % 0.050451 0.902 % 0.050222 0.444 %

MEAN 0.589 % 0.629 % 0.689 % 0.653 % 0.639 %
STANDARD DEVIATION 0.420 % 0.421 % 0.595 % 0.587 % 0.628 %

5. STEREO TRIANGULATION

In what follows, the subscripts L and R refer, respectively, to
left and right parameters of a stereo pair. A stereo triangula-
tion scheme is applied to estimate the 3-D coordinates of a
point [x y z]T, from the 2-D coordinates of its projection on
each image of a stereo pair ([uL vL]

T and [uR vR]T). The ex-
terior and interior parameters computed for each image are
the translation vectors [xL yL zL]

T and [xR yR zR]T, the rotation
matrices RL and RR, and the parameters fL and fR related to
the focal distance. The 3-D coordinates [x y z]T are estimated
through one of the following equations:

[

x
y
z

]

=

[

xL
yL
zL

]

+λLRL

[

uL
vL
fL

]

(12)

[

x
y
z

]

=

[

xR
yR
zR

]

+λRRR

[

uR
vR
fR

]

(13)

It involves the estimation of the minimizing parameters λL
and λR, found by performing the minimization of the squared

difference

ε2=

∥

∥

∥

∥

∥

[

xL
yL
zL

]

+λLRL

[

uL
vL
fL

]

−

[

xR
yR
zR

]

−λRRR

[

uR
vR
fR

]∥

∥

∥

∥

∥

2

(14)

6. EXPERIMENTAL VERIFICATION

This section presents an illustrative application of the pro-
posed camera calibration and 3-D reconstruction methods.
The stereo pair of images used in the experiments is depicted
in Fig. 2. The chosen 32 points are labeled by letters. The ex-
periments entailed the estimation of some distances in Fig. 2,
from the estimated 3-D coordinates of the corresponding de-
limiting vertices.

The measurement results are listed in Table 1, where the
real and estimated dimensions are compared, and the relative
error for each measure is computed. The results are shown
in terms of the number of points N selected from the set
{8,12,16,24,32} during the camera calibration setup. The
mean and the standard deviation of the relative error for each
set of experiments are given at the bottom of Table 1. It can
be observed that the mean error is smaller than 0.69%, and
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does not change significantly as the number of points N is in-
creased. Hence, a small value of N can be chosen in the cali-
bration approach proposed in this paper, consequently saving
computational costs, without compromising the 3-D recon-
struction performance.

6.1 Effects of Noise in the Extrinsic Parameters

To verify the robustness of the proposed least-squares imple-
mentation, a Gaussian noise having zero mean and standard
deviation σn varying from 0 (no noise) to 3 was added to the
2-D coordinates of the image points, to model measurement
noise, and the resulting effects in the estimated exterior ori-
entation parameters were observed.

About 1,000 independent simulations were carried out
for each value of σn, and the mean value of each set of sim-
ulations was computed. These simulations were compared
with the ones obtained using the linear method described in
Section 4. The results obtained for each parameter are plot-
ted in Figs. 3(a) and (b), for the left and right cameras, re-
spectively. The translation parameters (x0, y0 and z0) are ex-
pressed in meters, and the rotation parameters (ω , φ and κ)
are expressed in radians. In all plots the horizontal axes in-
dicate the values of the noise standard deviation. The curves
with crosses refer to the proposed non-linear least-squares
method, while the curves with diamonds refer to the linear
method. From these plots, we conclude that the proposed
algorithm is substantially less influenced by measurement
noise than is the linear method, since the estimates obtained
with the former remain very close to the actual values, re-
gardless the increase in the noise variance. With the linear
algorithm, on the other hand, as the noise variance increases,
so do the estimation errors.

7. CONCLUSIONS

A robust approach for camera calibration and 3-D recon-
struction was presented. Used in the exterior orientation
stage of stereo camera systems, the method lead to accu-
rate and fast parameter estimation. The minimization tech-
niques incorporated to the camera calibration process en-
abled global convergence of the derived non-linear least-
squares algorithm. The small errors achieved in the 3-D re-
construction experiments verified the robustness of the pro-
posed approach. The errors remained small regardless of the
number of points used in the calibration procedure, showing
the computational efficiency of the algorithm. The effective-
ness of the robust method was also corroborated experimen-
tally by analyzing the noise effects in the estimated parame-
ters.
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