ARCHITECTURE DESIGN FOR FPGA IMPLEMENTATION OF FINITE
INTERVAL CMA

Antonin Hermdnek™?, Jan Schier®, Phillip Regaliat

nstitute National des Télécommunications/GET
Dept. Communication, Images and Information Processing, Evry, France
?Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic, Prague, Czech Republic

ABSTRACT

In the paper, we present the architecture design of the
Finite Interval Constant Modulus Algorithm (FI-CMA)
for FPGA implementation. For floating point calcula-
tions required in the algorithm we use the library based
on the Logarithmic Number System (LNS). In the de-
sign, the resource reuse and minimization of the total
latency is emphasized.

1. INTRODUCTION

In modern digital communication systems an estima-
tor of transmited symbols represents one of the critical
parts of the receiver. The estimator consists typically
of an equalizer and of a decision device. Recent systems
(such as GSM system) use well known methods based
on training sequences, where a part of signal is known
and repeated. The equalizer is based on matching its
output to the reference signal, by adapting its param-
eters to minimize some criterion (typically MSE). Un-
fortunately the training sequence consumes a consider-
able part of the overall message (approx. 25% in GSM).
For this reason, much research effort has been devoted
to blind deconvolution algorithms, i.e., algorithms with
no training sequence. Perhaps the most popular blind
algorithm is the Constant Modulus Algorithm (CMA),
originally proposed by Godard [2].

The FPGA represents the technology with massive
fine tuned parallelism and high data throughput. As
target device for the algorithm implementation we have
chosen the XCV2000E device. This device offers both
enough on-chip dual-port block RAMs, which are nec-
essary to store the intermediate results, and sufficient
amount of logic.

The paper is organised as follows: in the next sec-
tion the system model and the optimisation criterion
are discussed. In Section 3, the Finite Interval CMA
algorithm is briefly reviewed. In Section 4, numerical
issues are considered. Section 5 presents the proposed
design architecture and finally in the Section 6, the work
is concluded.

2. CONSTANT MODULUS ALGORITHM

In this section the system model and CM criterion are
briefly presented. In the following text all vectors are
assumed to be in column orientation.

Let {s,} be the symbol sequence to be transmited.
It is assumed to be independent and identically dis-
tributed, and adhering to a constant modulus (CM)

constellation, such as PSK. The data symbols are trans-
mitted over a Single-Input Multiple-Output (SIMO) dis-
crete channel with impulse response matrix H, assumed
to have finite length. The received signal has the form:

u, = Hs,, + b, (1)

where s, = [$p Sp—1 - -- sn,M]T collects the M most
recent input symbols, b, is a background noise vector,
H is the P x M, channel impulse response matrix, and
P is the number of antennas or the oversampling factor.
An equalizer is viewed as a linear combiner of order M
and its output can be written in the form:

M

Yn = Zggun—k = gTUn (2)
k=0

where n is the discrete baud rate time and g and U are
defined as:

8o up

g1 Up—1
g = .) Un =

gM Up— M

The CMA algorithm tries to minimize a cost function
defined by the constant modulus (CM) criterion which
penalizes deviation in the magnitude of the equalizer
output from a fixed value. This criterion has the form:

Jora(®) = 1 [(unl* = 2)?])

where F [-] is expectation operator and +y is a constant
chosen as a function of the source alphabet.

The main advantage of this criterion is that the re-
sulting gradient descent algorithm is very similar to the
well known LMS algorithm. The relation between the
LMS and gradient CMA algorithm have been discussed
in many papers. It was shown that the CMA’s cost sur-
face can be directly related to LMS and that the LMS
convergence rate expressions can be used to provide the
limits of CMA tracking capabilities. In addition, the
relatively slow convergence of CMA (x 10? iterations),
as well as its dependence on the initialization and on the
step-size parameter, are recognized drawbacks.

2039

3. FINITE INTERVAL CMA

The FI-CMA is a windowed version of (3) where a time-
window operator is applied to the received data (i.e.,
the expectation operator is replaced by summation over
finite data interval) and its cost function has the form:

N 2 N 2
I = (bl 1) =Y (lg"0[" 1) @

n=1 n=1

where the constant « is replaced by 1 without loss of
generality because its value does not change the position
of the local extrema points. In [5] it was shown that
local extrema of (4) coincide with the local extrema of
the function:

N
Zn:1 y;ll
N 2y2
(> n=192)

From the equation (2), N successive equalizer out-
puts can be directly rewritten in matrix form as:

F(g) = ()

Y1 Uy
Yo u?
y=| . |=| . |e=QRg=Qw (6)
YN u%
——
u

where the QR-~decomposition of matrix U is used to ob-
tain an orthonormal matrix Q.

The optimal equalizer coefficients are reached by the
following iterative procedure:

Vil =
Wit1 =

W; — MQTyg/Fi (7)
Vitr/|[Vig |l

where i is the iteration counter. In [6], the optimal step-
size has been derived of the form u; = ﬁ With that
setting of pu and with the oversampling factor 2, the
procedure (7) convergs typically after 10 iterations.
The QR-decompositon is calculated using Givens ro-
tations as follows. Let u;; be the it" element of vector
Uyg. Let Ry be a triangular matrix obtained by trian-
gularization of sub-matrix U, (first k rows of matrix i)
and Q) is its corresponding orthonormal matrix. Then
matrices Qi1 and Rg41 can be calculated as follows:

R R
|: 1(<)+1 :| =GnNGpn_1...Gy |: ule:l :l (8)

[Qk+1Qk]=[%k ?}G{...G%IG% (9)

where the matrix G; eliminates u;j, and is defined as
follows:

The sine and cosine parameters are computed using
the following formulae:

Tii Ui,k

_ S = —F/— (].O)
A/ 7"121 + “?,k \/ T?z + “?,k

Note: The calculation of R and Q for k=1... N is
provided in the similar way (see [3] for more details).

C; =

4. NUMERICAL REQUIREMENTS

To summarize, the FI-CMA algorithms consist of two
successive parts: the QR-decomposition of input data
matrix and the iterative procedure (7). The dynamic
range of data and intermediate results in both these
parts requires that floating point arithmetic is used for
arithmetic operations. That is, however, rather costly
for an FPGA implementation. In our work, we use the
Logarithmic Number System (LNS) arithmetic.

4.1 Logarithmic arithmetic

This arithmetic is based on logarithmic numeric rep-
resentation of floating-point numbers. The logarithmic
equivalent of a number — a two’s complement fixed-point
value equal to log, |z| — is mapped to an integer. Current
versions of the library offer 19- and 32-bit wordlengths.
The number consists of an integer part, which is always
8 bits long, and of a fractional part, the size of which
depends on the selected data precision.

Multiplication and division then transform to a
fixed-point addition and subtraction, and the square-
root operation becomes a simple bit-shift.

To implement addition and subtraction, the loga-
rithmic function log,(1 + 2°~?) has to evaluated. This
function is evaluated using a first-order Taylor-series ap-
proximation with look-up tables. While the size of these
tables often represents substantial problem, in our solu-
tion, they are kept small by using an error correction
mechanism and a range-shift algorithm [1].

The logarithmic operations were implemented in
the High-Speed Logarithmic Arithmetic (HSLA) library.
They are fully pipelined, addition and subtraction have
each 8 clock cycles latency, other operations have 1 clock
cycle latency. In order to utilize the look-up tables,
which are implemented in dual-port Block RAMs, ef-
ficiently, the ADD/SUB unit has been implemented as
a twin unit. For more details see [1, 4].

The resource utilization figures of the HSLA opera-
tions are summarized in Table 1.

Parameters (19/32-bit, XCV2000E-6)
Op. | Lat. | SLICEs | BRAMs
ADD/SUB 8 8/13% 3/70%
MUL 1 1% 0%
DIV 1 1% 0%
SQRT 1 1% 0%

Table 1: Resource utilization of the HSLA cores

4.2 Performance comparison

In this section we compare the performance of our 32-
bit and 19-bit LNS implementations with conventional

2040

32-bit floating point. The comparison is based on the
computer simulations using double- and single precision
floating point arithmetic and 32- and 19-bit bit-exact
LNS functions.

As a reference model, we have chosen the implemen-
tation using the IEEE double precision arithmetic. As
a performance comparison measure we have used the
variance of the error signal e = (y; — ¥;).

We define the signal-to-noise ratio caused by the
round-off error as:

0.2
SNR = —10log; — (11)
g

€

where 02 is the variance of the output y, and o2 is the
variance of the corresponding error signal.
The values were measured for N = 500, M =4, P =
2, for the following configurations (note that SNR in-
creases with N due to accumulation of errors in the QR
decomposition):
e Floating point 32 bit and LNS 32 bit: SNR=-90 dB;
e QR 64 bit, iterative equalizer update 19 bit — to test
performance degradation of the update itself: SNR
= —56 dB;
e All computations in 19 bit LNS, to test the total
performance degradation: SNR = —20 dB.

Although the SNR drops in the last case, the ISI eye
remains open. Following the results of experiments not
included in the paper, the 19-bit implementation should
be sufficient.

5. DESIGN ARCHITECTURE

To implement the algorithm, the following computa-
tional units are needed:

1. The QR-processor which consist of:

e the diagonal processor of the matrix R, comput-
ing the rotation sine and cosine values;

e the off-diagonal processor, which rotates rows of
the matrix R;

e the column processor, which rotates the columns
of the matrix Q.

Note that in contrast to the usual design of the QR-

update, we compute explicitly the first N columns

of the Q matrix.
2. The FEqualizer update processor, which consists of the
following parts:
o the matriz-vector multiplier for y = Qw;
e the parallel processor for calculation of
W =QTy® and F; = 3y
e the parameter update processor for v.= w —
uw/F; and w = v/ ||v]|.
For the overall implementation architecture design we
have to keep in mind the following factors: matrix di-
mensions, restrictions on parallel access to the device
memories (dual ported RAMs) and limited number of
the LNS adders that can be fit into a single device.

For the matrix dimensions, let N and M be the
equalizer order and the data block size, respectively.
Then, N <« M. Typical values are N = 10...20 and
M = 250...1000. It follows that while R is a triangular

(N x N) matrix, Q is an (N x M) matrix, i.e., it has
many more rows than columns.

Because of the complexity of the design (the number
of “processors” to be implemented), we have decided to
use the 19-bit precision, to be able to use more adders
while achieving acceptable precision. We assume that
the data block is stored in some external FIFO memory.
During each update step, only the data vector u,, is read
which means that only P 19-bit values are transfered (P
is an oversampling factor). The input data vector U, is
composed/stored in an internal circular buffer which is
used to prepare the input for the QR processor.

5.1 QR-processor architecture

The R matrix update procedure is implemented using
one diagonal and one off-diagonal processor. While the
off-diagonal cell depends on the output of the diagonal
cell for the same input data, the rotation of i-th row of
the matrix R can be fully pipelined and can be com-
puted in parallel with the update of Q. Because of this
data dependency, the diagonal and off-diagonal proces-
sor can share a single twin-adder. Data flows in both
cells are shown in Figure 1 and 2.

0

72
T i
@_>QD—> ”

Figure 1: Data flow of diagonal cell

2
Tiyi

’

Figure 2: Data flow of R off-diagonal and Q column cell

Since the number of rows in Q increases with every
new data vector in a single block, the computational
complexity of this matrix grows linearly from the be-
gining to the end of the block. (Note the complexity of
update of matrix R remains constant.) The intermedi-
ate results are stored in two dual-port RAMs: one for
the elements of the Q matrix, the other for the right-
most column of the composed matrix in equation (9).
The data flow in the column processor is the same as in
the off-diagonal processor of R (Figure 2).

The implementation probably cannot be extended to
employ more processors, because of the above mentioned

2041

BRAM BRAM BRAM
Qe Qd Yy
i-col j-col k-col l-col

ik + Dy, (k)

% %

Figure 3: Matrix-vector multiplier

limitations (only two ports in each RAM and a growing
number of rows).

5.2 Equalizer update procedure

The equalizer output (6) is computed using the vector-
matrix multiplier. When the multiplication is evaluated
in the usual way, i.e., row-wise with respect to matrix
Q, the efficiency of the resource utilization will be rather
small. This is due to the relatively high latency of the
LNS adder (and, consequently, the latency of the LNS
Multiply-and-Accumulate unit) with respect to the row
length (the number of elements in the MAC operation).
To improve the efficiency, we propose to compute the-
multiplication in a column-wise form: all elements of i*"
column will be multiplied by the i-th element of the co-
efficient vector w. The result will be stored in temporal
memory. Using the dual-port Block RAMs, we are able
to address two columns of Q at the same time. Since we
do not accumulate (just multiply and add), there will be
no dummy cycles. When partitioning the Q matrix to
two Block RAMs, for example to Q. and Qg with even
and odd columns of Q, we may employ two multiply-
add units in parallel. As a result, all adders that were
used for the QR-decomposition will be utilized. The
structure of the unit is shown in Figure 3

The parallel processor computes the value of the cri-
terion function which is simply Y y# and the matrix-
vector multiplication Q”y?. Since M is much higher
than the latency of the MAC unit, it can be used ef-
ficiently here. With the Q matrix partitioned into two
separate block RAMs, we may use up to four MAC units
and reuse all the available hardware. The structure of
the processor is shown in Figure 4. It has to be noted
that with the LNS arithmetic, computation of the pow-
ers y> and y* is cheap on the amount of logic and can
be calculated in a single cycle.

The structure of the parameter update processor is
simple: it performs mainly computation of the step size
Wi = S%Fi, division and multiplication of a vector by a
constant and a second norm calculation. Again, thanks
to the properties of the LNS arithmetic, the computa-
tion of multiplication/division as well as the square- and
fourth root are inexpensive. The architecture of the unit
is straigforward.

Figure 4: Parallel processor architecture

6. CONCLUSIONS

An architecture for an FPGA implementation of the
FI-CMA algorithm has been proposed in this paper.
This algorithm represents complex and computation-
ally intensive advanced DSP algorithm, which requires
floating-point arithmetic operations including higher or-
der power and root operations. The properties of the
Logarithmic Numbering System have been used with ad-
vantage: multiplication and power/root operations with
very low latency and low resource utilisation. The aim
of the design was that the addition core, which con-
sumes most resources of all operations (for the neces-
sary look-up tables) is reused as much as possible. Also
the memory partitioning was considered so as to allow
higher parallelization of computations and to keep the
total latency as small as possible, to achieve maximum
performance. The resulting design will fit in a single
XCV2000E device.

REFERENCES

[1] J. N. Coleman, E. I. Chester, C. 1. Softley, and
J. Kadlec. Arithmetic on the european logarithmic
microprocessor. IEEE Transactions on Computers,
49(7):702-715, 2000.

[2] D. N. Godard. Self-recovering equalization and
carrier tracking in two-dimensional data commu-

nication systems. IEEE Trans. Communications,
28:1867-1875, November 1980.

[3] G. H. Golub and C. F. van Loan. Matriz Computa-
tions. Johns Hopkins University Press, 1996.

[4] R. Matousek, M. Tichy, Z. Pohl, J. Kadlec, and
C. Softley. Logarithmic number system and floating-
point arithmetics on FPGA. In M. Glesner, P. Zipf,
and M. Renovell, editors, Field-Programmable Logic
and Applications: Reconfigurable Computing Is Go-
ing Mainstream, volume 2438 of Lecture Notes in
Computer Science, pages 627-636, Berlin, 2002.
Springer.

[5] P. A. Regalia. A finite interval constant modulus
algorithm. In Proc. International Conference on
Acoustics, Speech, and Signal Processing(ICASSP-
2002), volume III, pages 2285-2288, Orlando, FL,
May 13-17 2002.

[6] P. A. Regalia and E. Kofidis. Monotonic convergence
of fixed-point algorithms for ICA. IEEE Trans. Neu-
ral Networks, 14(4):943-949, July 2003.

2042

	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Antonin Hermanek
	Jan Schier
	Phillip Regalia

