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ABSTRACT

This paper deals with the application of adaptive signal mod-
els for parametric audio coding. The matching pursuit algo-
rithm is used for extracting sinusoidal components and tran-
sients in audio signals. The resulting residue is perceptually
modelled as a noise like signal. First of all, an accurate detec-
tion of transients in audio signals is required. When a tran-
sient is detected, psychoacoustic-adapted matching pursuits
are accomplished using a wavelet-based dictionary followed
of an harmonic one. Otherwise, matching pursuit is ap-
plied only to the harmonic dictionary. This multi-part model
(Sines + Transients + Noise) is successfully applied for audio
coding purposes, assuring high perceptual audio quality at
low bit rates (lower than 24 kbps for most of the CD-quality
one channel audio signals considered for testing).

1. INTRODUCTION

Parametric coding of audio signals has become a popular tool
for representing audio signals at very low bit rates [1, 2, 3]. A
wide range of audio signals intuitively fit into the three-part
model of Sines, Transients and Noise. Transients describe
drum hits and the stacks of many instruments, sines describe
signal components that have a distinct pitch, and noise of-
ten describes the rest of the signal that is neither sinusoidal
nor transient. This model consists of three parts that work to-
gether and complement each other to form a complete and ro-
bust signal model, which makes possible a highly optimized
audio compression scheme.

However, because each part of the model assumes an
underlying structure to the signal, modelling errors are in-
evitable (i.e. if a sinusoidal model represents a signal onset,
the attack becomes smeared in time, resulting in a pre-echo).
To alleviate model mismatch problems, the three part of the
model work together and operate in series. First, transients
are modelled and removed, leaving a residual signal. Then,
sinusoids are modelled and removed, leaving a noise-like sig-
nal for the noise model. As such, each model captures signal
components that are coherent to its underlying assumptions.

The classical sinusoidal or harmonic model has been ap-
plied with success for the purpose of coding speech signals
[4]. This model comprises an analysis-synthesis framework
that represents a signal as the sum of a set of sinusoids (par-
tials) with time-varying frequencies, phases, and amplitudes.
A large number of methods have been proposed for estimat-
ing the parameters of the sinusoidal model. Estimation of
parameters is typically accomplished by peak picking the

Short-Time Fourier Transform (STFT) [4]. Usually, analy-
sis by synthesis is used in order to verify the detection of
every spectral peak.

On the other hand, transients extraction is useful for
those parts of audio signals with sharp attacks, because si-
nusoidal and noise models cannot represent them efficiently.
In [3, 5, 6, 7] different approaches for transient modelling are
presented.

The three-part signal model is completed with a noise
model for noise-like signals. Noise modelling has seen at-
tention in the literature. LPC based schemes are the subject
of much research. Another promising noise model has per-
ceptual roots in that it uses energy on an Equivalent Rectan-
gular Bandwidth (ERB) scale [8]. In this paper the three-part
signal model is completed with a wavelet-based noise model.

This paper proposes an efficient, accurate and flexible
multi-part model for wide-band speech and audio coding.
The matching pursuit algorithm is used in order to itera-
tively select the functions that best match the current audio
frame for representing transients and sinusoids. Sinusoids
are modelled using sets of complex exponential functions,
while transients are modelled using sets of wavelet functions.
The matching pursuit algorithm operates with both sinusoids
and wavelet functions.

2. MATCHING PURSUIT

The matching pursuit algorithm was introduced by Mallat
and Zhang in [9]. So as to explain the basic ideas concerning
this algorithm, let’s suppose a linear expansion approximat-
ing the analyzed signal x[n] in terms of functions g,[n] chosen
from a over-complete dictionary D = {g, ; i =0,1,...,L}.
The L elements of the dictionary span CZ and are restricted
to have unit norm.

The problem of choosing the functions g;[n] € D that best
approximate the analyzed signal x[n] is computationally very
complex. The matching pursuit is a greedy iterative algo-
rithm that offers a sub-optimal solution, where the two-norm
is used as the approximation metric because its mathematical
convenience. When a well-designed overcomplete dictionary
is used in matching pursuit, the nonlinear nature of the al-
gorithm leads to compact signal-adaptive parametric models
[9].

At the first iteration of matching pursuit, the atom g,[n]
which gives the largest inner product with the analyzed sig-
nal x[n] is chosen. The contribution of this vector is then
subtracted from the signal and the process is repeated on the
residue. At the m-th iteration, the residue is:
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where ;) is the weight associated to the optimum atom
Lim) [n] at the m-th iteration, and i(m) the dictionary index of
the optimum atom chosen at the m-th iteration.

By computing the orthogonal projections of the residue
r"[n] on elements g,[n] € D, the weight associated to each
dictionary element at the m-th iteration is achieved:
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It is simply equivalent to choosing the atom whose inner
product with the signal has the highest value.

The computation of correlations (+"[n],g;[n]) for all
g;[n] € D at each iteration is highly computational consum-
ing. As derived in [9], this computation effort can be substan-
tially reduced using an updating formula based on equation
(1). The correlations at the m-th iteration are given by:

(" n) g [n]) = ("], iln]) = @y~ (G 1], &5 1)) (5)

where the only new computation required for the corre-
lation updating procedure refers to the cross-correlation term
(&;(m 1] &i[n]), which can be pre-calculated and stored, once

overcomplete set D has been determined.

3. THE PROPOSED PARAMETRIC AUDIO CODER

The proposed parametric audio coder is defined with three
meaningful components:

- Transient modelling using energy-adaptive matching
pursuit with a dictionary of wavelet functions.

- Sinusoidal modelling using psychoacoustic-adaptive
matching pursuit with a dictionary a complex exponentials.

- Residue modelling as a noise like signal.

Figure 1 shows the encoder stage of the proposed para-
metric audio coder.

The proposed audio coder extracts from the input audio
signal a set of different parameters to be sent to the decoder.
These parameters represent the information provided by the
three-part model (Sines + Transient + Noise). They are quan-
tified using psycho-acoustical information to ensure that de-
coded signals are perceptually identical to the original ones.

Before transient modelling, transient detection is re-
quired. Our transient detector is based on sudden energy
change detection. Besides, an adaptive tiling of the time axis
is required to achieve a right performance of the proposed
audio coder. We have used the algorithm proposed in [10].

Input

signal Transient Transient Transients .
detector modelling >
+

Sinusoidal Sines

; —
modelling
n -

Residual |Noise
modelling ’

Figure 1: Block diagram of the encoder stage

3.1 Transient modelling

We propose using matching pursuits with a dictionary of
orthogonal wavelet functions for transient modelling. The
overcomplete dictionary D is made up with those functions
which give rise to the J-depth full Wavelet-Packet (WP) de-
composition, being My, , = J- N the WP dictionary size, and
N the frame length. The inner products of the signal with
the wavelet-based atoms in set D lead to all the wavelet
coefficients that can be considered in the J-depth full WP
tree. These coefficients can be identified using three indexes,
{i,j,k}, which indicate the sub-band at a given decompo-
sition depth, the decomposition depth and the delay, respec-
tively. The wavelet coefficients at the m-th iteration of match-
ing pursuit and the wavelet-based atoms can be expressed as
follows:
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According to (5), the only necessary correlations to
implement the matching pursuit are (x[n], (i ik [7]) and

<g{i1,j1,k1}[n]’g{iz.jz,kz}[nD'
from the WP transform of x[n], while correlations between
atoms are pre-calculated and memory stored. These cross-
correlations are formulated in [7] when wavelet-based dic-
tionaries built from orthonormal wavelets are used, which
results in:

The first ones are obtained
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where j = j; — j, and i = ((i;)),;. Therefore, according
to (8), the iterative procedure to update correlations requires
impulsive responses of the synthesis WP tree branches to be
stored [7].

3.2 Sinusoidal modelling

For sinusoidal modelling, we propose using matching pur-
suits with a dictionary of windowed complex exponential
functions, instead of a set of windowed sinusoidal functions,
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in order to reduce the computational complexity. Using win-
dowed complex exponential sets, only the frequency of every
exponential function must be determined, which involves a
significant reduction of the dictionary size [11]. The func-
tions that belong to the considered set can be expressed as
follows:

gi[n]:S~w[n}'ej%”, i=0,...,L Q)

The constant S is selected in order to obtain unit-norm
functions, w{n] is the N-length analysis window, and L+1 the
number of frequencies within the dictionary. Amplitude, fre-
quency and phase are the three parameters that define each
extracted tone by the sinusoidal model.

The implemented matching pursuit algorithm for sinu-
soidal modelling is psychoacoustic-adaptive as in [12]. Ac-
cording to this approach, the extracted tone at each itera-
tion is the perceptually most important one. Psychoacoustic-
adaptive matching pursuits [ 12] define a perceptual distortion
measure as

I i
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where " indicates the Fourier transform operation, w{n]
is a window defining the signal segment, and 4 is the inverse
of the masking threshold, which is computed on the basis of
the reconstructed signal that changes with each iteration.

In our implementation, the perceptual distortion measure
in equation (10) is slightly modified by integrating directly
along the bark band scale, which results in a complexity re-
duction.

Another improvement to be remarked is the contribution
of a perceptual stopping criteria. In [12], the masking thresh-
old is initialized to the threshold in quiet at the first itera-
tion, being added the mask due to each extracted tone at the
remaining iterations. However, the noise-to-tone masking
is not considered at all, which makes unfeasible a percep-
tual stopping procedure. Instead, we initialize the masking
threshold to the threshold in quiet plus the mask owing to the
noise (as computed in MPEG-2 layer III), which assures that
only perceptually meaningful tones are extracted, if the algo-
rithm is halted when the extracted tone at a given iteration is
below the masking threshold.

3.3 Residual modelling

After sinusoidal and transient components are extracted from
the original signal, the residue is considered to be a noise like
signal. For audio applications, psychoacoustic phenomena
have to be incorporated in the parametric noise model. For
noise perception, the exact shape of the magnitude spectrum
is not as crucial as the energy at each critical band. Accord-
ing to this principle, the ERB noise modelling is proposed
in [8]. In our approach, the ERB model is approximated by
the Discrete Wavelet Transform (DWT). This noise model
adheres to the general idea of filtering the output of a white
noise source to approximate the shape of the residue in the
frequency domain. In this case, DWT dictates the form of the
filter bank, performing a dyadic partition in frequency, which
plays a central role in many aspects of perception.

The proposed noise model is composed of two stages:
analysis and synthesis. The DWT-based analysis stage di-

vides each frame into J + 1 wavelet bands (being J the de-
composition depth), and estimates their energy. For the /-th
frame, the energy of the r-th wavelet band is found as:

El=Y [X'(m)P (11)
mep,

where (B, contains the indexes of the r-th wavelet band,
and X' (m), m € B, represents the wavelet coefficients of the
r-th wavelet band for the /-th frame.

The energy parameters approximates a power spectrum
with piecewise constant energy according to the DWT filter
bank. These parameters are used for the DWT-based synthe-
sis stage. In the synthesis stage the wavelet coefficients are
initialized to white noise using each band energy to control
its respective gain, which results in the synthesized noise.

Subjective listening tests pointed the necessity of improv-
ing the time characteristics of the synthesized noise in order
to avoid spreading effects. LPC filtering has been included
in the proposed noise model to achieve a time shaping of
the synthesized noise. We have applied an Auto-Regressive
all poles model with 4 poles as maximum. The number of
poles in the model is given by the prediction gain. A lattice
structure is adopted to achieve an efficient quantization of
the AR model information included in our noise modelling
approach.

4. RESULTS AND DISCUSSION

To assess the performance of the proposed audio coder, we
have obtained some subjective and objective results. The
configuration parameters are: 32-coefficient Daubechies fil-
ters and 4-level full WP decompositions (J = 4) for transient
modelling, 4096 frequencies (L = 4096) within the dictionary
for sinusoidal modelling, and 32-coefficient Daubechies fil-
ters and 9-level depth for DWT in noise modelling. Six mu-
sic samples considered hard to encode have been used. They
are 15 seconds-length CD-quality one channel audio signals.
Special attention has been paid to signals with impulsive en-
ergy bursts, which are extremely susceptible to the presence
of ’pre-echoes’, and we have made sure that the chosen set
of audio source material covers a wide variety of signals. It
is listed in table 1.

Table 1: SOURCE MATERIAL USED IN THE TEST
TEST ITEM DESCRIPTION

si01 Harpsichord

si02 Castanets

sm01 Bagpipes

sm02 Glockenspiel

sc01 Trumpet solo and orchestra
sc02 Orchestra piece

4.1 Objective results

The resulting binary rates obtained with the proposed para-
metric audio coder are presented in table 2. It contains the
partial bit rates resulting for the synthetic signals obtained
from sinusoidal, transient and residual modelling and the
final bit rates resulting for the decoded audio signals (in
kbit/s).

In order to illustrate the performance of the proposed au-
dio coder, let’s consider an audio frame with an impulsive
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Table 2: BIT RATES

[ Item Tones Transients Residue Decoded signals |
si01 157  3.43 4.49 23.62
si02 878  7.33 6.62 22.73
sm0l 16.17 2.44 4.71 23.32
sm02 534 298 3.15 11.47
sc01  20.57 0.62 2.59 23.78
sc02  19.72 0.41 5.17 25.3

energy burst. Figure 2(a) represents the original audio signal,
while figures 2(b) and 2(c) represent the synthesized transient
and sinusoidal components, respectively, when they are mod-
elled using the above described approaches. Finally, figure
2(d) shows the noise-like residual signal. It can be observed
that the synthetic signal in figure 2(b) properly represents the
sharp attack in the original one.
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Figure 2: Synthetic signals obtained from transient, sinu-
soidal and residual modelling.

4.2 Subjective results

The subjective tests have been performed on headphones un-
der the A-B-C rule using the sequences shown in table 1.
The A-B-C methodology, known as a triple-stimulus double
blind test with hidden reference, is recommended by ITU-R
in the BS. 1116-1 recommendation. Tests have been carried
out with twenty trained listeners, and the results are shown
in table 3.

Table 3: SUBJECTIVE RESULTS UNDER THE ITU-R
BS.1116-1 RECOMMENDATION.

[ TestItems Orig. MOS  Decoded MOS  AMOS |
s101 4.98 4.45 0.53
s102 5 4.07 0.93
smO1 4.99 4.51 0.48
sm02 5 4.13 0.87
scO1 5 4.40 0.6
sc02 5 4.28 0.72

5. CONCLUSIONS

This paper deals with parametric audio representation for au-
dio coding. The used model considers the audio signal com-
posed of three kinds of components: sinusoidal, transients
and noise like components. For estimating the parameters of
the sinusoidal and transient models, matching pursuit with
dictionaries of complex exponentials and wavelet functions,
respectively, is used. A novel wavelet-based noise modelling
is applied for residue modelling, which is completed with
LPC filtering to achieve Time Noise Shaping (TNS). The
proposed audio coder achieves nearly transparent coding at
very low bit rates (lower that 24 kbit/seg). Hence, our coder
is a good proposal for audio coding applications at very low
bit rates, as Internet streaming.
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