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ABSTRACT

This article presents a new stochastic geometric model for
unsupervised extraction of line network (roads, rivers,...)
from remotely sensed images. The line network in the ob-
served scene is modeled by a polyline process, named CAR-
OLINE. The prior model incorporates the topological proper-
ties of the network considered through potentials on the poly-
line shape and interactions between polylines. Data proper-
ties are taken into account through a data term based on sta-
tistical tests. Optimization is realized by simulated annealing
using a RIMCMC algorithm. Some experimental results are
provided on aerial and satellite images.

1. INTRODUCTION

More than a half of the globe remains to be mapped. Conse-
quently, many methods have been - and will be - developed
in order to extract cartographic items for the production or
the update of geographical data. In this context, we have
been interested in extracting line networks (roads, rivers,...)
from remotely sensed images. One possibility is to consider
a semi-automatic approach where an operator gives some
checking points [1-3] in order to initialize a road tracking al-
gorithm. This approach can be extended to a fully-automatic
one by using a previous detection obtained by a local opti-
mization [4—6]. This type of technique, however, is strongly
sensitive to the pre-detection.

In this paper, we present a fully-automatic technique for
line network extraction which is not based on a combination
of several stages of processing of the image. We model the
line network in the image by a spatial process in a compact
F C R?, that is a random set of objects whose number of ob-
jects located in F' is a random finite variable. Such models,
introduced in image processing in [7], provide the same type
of stochastic properties as those of Markov random fields,
while incorporating strong geometric constraints. In [8, 9],
road extraction is performed using spatial processes whose
objects are interacting line segments described by three ran-
dom variables: their midpoint, their length, and their orien-
tation. We extend this modeling to more complex objects,
such as in [10] for cell recognition, where objects are vari-
able resolution deformable templates. More exactly, our new
model, called CARtographic Oriented LIne Network Extrac-
tion (CAROLINE), is a spatial process where objects are in-
teracting polylines composed by an unknown number of seg-
ments. In comparison with [8, 9], the connection between
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Figure 1: A typical object of the CAROLINE model.

segments is embedded into the object definition and thus ex-
tracted line networks should be more continuous; the road
and river junctions are better modeled; and polylines can bet-
ter fit sinuous line network than models based on segments.

The CAROLINE prior model is presented in Section 2.
Data properties are taken into account in a data term, pre-
sented in Section 3. The optimization - described in Section
4 - is done via a simulated annealing. This algorithm is tested
in Section 5 on remotely sensed images (aerial and satellite
data).

2. PRIOR MODEL

2.1 Model for an unknown number of polylines

CAROLINE process is a random configuration of poly-
lines, located in a compact set F of R? corresponding to
the observed scene, whose number N of polylines is un-
known. Each polyline o is described by: its initial point
p' € F; its width e € [€,in> €max]; an unknown number
n€{1,...,nma} of segments, which are described by their
length/; € [L,;,, Lmax] and their orientation a; €] — 71, 7. An
example for n = 3 segments is given in Fig. 1.

We first define a reference process which is a completely
random process. Under the reference process law, the poly-
line number N follows a Poisson law and polyline parame-
ters, {pl,e,n,{lj}jzll_n,{aj}j:l‘_n}, are independently and
uniformly distributed in their respective state space.

To introduce an a priori on polyline shapes and inter-
actions between polylines, we then specify the CAROLINE
prior process by a prior density /2, with respect to the refer-
ence process law. The expression of 4, is given in Section
2.3 after a presentation of the possible interactions between
polylines in Section 2.2.

2.2 Polyline interactions

We consider two types of interaction.
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Figure 2: Polyline states with respect to connection.

The first one is based on a relation of proximity P be-
tween polylines. This interaction is forbidden in order to
avoid too close polylines. When this interaction occurs for
a given polyline configuration C, the density %,(C) is thus
equal to zero.

The second interaction is based on the Euclidean dis-
tance between the endpoints p. and p? of a polyline o and
another polyline or one edge of the compact F. If the dis-
tance d(pk,c) between p% and c (polyline or edge) is lower
than a threshold &, o is said connected to ¢ through p%. Let
Ve r(0) be the set of polylines and edges of C and F* such
that d(p),c) < € or d(p2,c) < €. A polyline o is said: free,
if the set Ver (0) is empty; single, if o is connected by only
one of its endpoints; double, if o is connected by both of its
endpoints. This is illustrated in Fig. 2.

2.3 CAROLINE prior density

The prior density 4, of a polyline configuration C =
{o,,...,05} can be written in Gibbsian form as follows:

0,if30,€C,0;,€C/o;~po;

1 al ,

7 exp—;1 {Ul (0;) + Uy(0;, V¢ o(0,)) | » if not
1)

where Z is an unknown normalizing constant, 0, ~p 0 ; means
that o, and o, verify the proximity relation P, U, is a potential
based on the object shape and U, a potential based on the
polyline connections.

The energy term U, associated to a polyline o composed
of n segments is written as follows:

(€)=
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where M,, M; and My are positive weights. U, penalizes
small n, U,, favors long segments and U, favors small cur-
vature. Moreover, self-intersection is forbidden by introduc-
ing a hard-core potential.
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Figure 3: Pixel mask associated to a polyline.

The energy term U, is written as follows:

Uy(0,Ve p(0)) = Uy (0/ Ve p(0)) + Z Uyy(0,¢)  (3)

where U, penalizes free and single segments by constant
and positive potentials; U,, favors each connection between
an endpoint p¥ and a polyline, or an edge ¢ by a negative
potential which is based on a function measuring the quality
of the connection. This function depends on the distance be-
tween pX and c. The more distance decreases, the more the
potential value decreases.

3. DATA TERM

We build a data term based on the following assumptions :
e H,: The grey level variation between the network and the
background is large;
e H,: The local average of the grey level inside the network
is homogeneous.

To verify that a polyline is well-fitted to the data, we con-
sider a mask of pixels composed of the set of pixels V' cor-
responding to the polyline in the image and two collinear
regions R, and R,, positioned at a distance d from V, cor-
responding to the nearby background. Each pixel mask is
divided in sections of fixed number of pixels as shown in
Fig. 3.

Firstly, the contrast hypothesis is checked for each sec-
tion M' = {V',R|,R,}. The test value . associated to M’ is
the minimum of the two Student t-test values between the
internal section V'’ and the two external sections R} and R.
Then, we perform a thresholding of 7. between 7, and ¢, fol-
lowed by a linear transformation from [t,,z,] to [—1, 1] in or-
der to obtain a potential, U, (i), measuring H, for the section

Secondly, the homogeneity hypothesis H, is checked by
computing the Student t-test values 7} between successive
internal sections ¥’/ and V1. Then, we perform a thresh-
olding of t;; between 1 and ¢, followed by a linear transfor-
mation from [1,£] to [—1, l]3 in order to obtain a potential,
U, (i,i+ 1), measuring H, for {V,Vi*1}.

Finally, the data potential associated to a polyline is the
following:

1 I-1
Ud(o):PcA Uc(l’)JthA Uh(i»iJFl) “4)

1= 1=
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where / is the number of sections of the pixel mask associated
to o, p. and p,, are positive weights respectively associated to
the contrast potential U, and the homogeneity potential U,,.
The total energy for a given configuration C is the sum of
data potential of each polyline belonging to C. The data term
is thus given by:

o

h,(C) Oexp (— ZCUd(Oi)> Q)

i

where U, is given by equation (4).

4. OPTIMIZATION

To extract the line network from an image, we aim to find
a configuration of polylines which maximizes the unnormal-
ized process density f given by:

J(C) O hp(C) hy(C) (6)

where ), and &, are respectively given by equation (1) and
equation (5). This is a non convex problem for which a direct
optimization is not possible given the large size of the state
space that is Uy_,Q, where Q,; is the set of configurations
of N polylines. We propose to estimate this maximum by
a simulated annealing, which consists in successive simula-
tions of the process distribution 1T, specified by the density

fYT with T gradually dropping to 0. A proof of conver-
gence is given in [11] when the decrease of temperature T’
is logarithmic. In practice, temperature decreases geometri-
cally in order to reduce the computing time.

The algorithm chosen to simulate the unnormalized mea-
sure 1T, is a RIMCMC algorithm. It consists of simulating
a discrete Markov Chain of invariant measure 77, which per-
forms small jumps between the spaces Q; [12, 13]. This iter-
ative algorithm does not depend on the initial state. At each
step, a transition from the current state to a new state is pro-
posed according to a proposition kernel which is composed
of several sub-kernels, each corresponding to a reversible
move (“birth-and-death”, symmetrical transformation, etc.).
The transition is accepted with a probability given by Green’s
ratio, which is computed so that the detailed balance condi-
tion is verified [13].

Although it is sufficient to define uniform birth-and-death
[12] in order to simulate spatial processes, it is important to
define relevant moves in order to speed up the convergence
of the Markov chain. In addition to a uniform “birth-and-
death”, we have thus defined a “birth-and-death” of polylines
containing only one segment based on data (off-line compu-
tation of data term for small pixel masks) in order to propose
segments correctly positioned. We also propose small per-
turbations very useful when a polyline is already well posi-
tioned: “dilation”of a polyline; “add-and-remove” a segment
at the end or the beginning of a polyline; “move” a point of
a polyline (an endpoint or a point between two segments);
“split-and-merge” of segment. Moreover, we use a “split-
and-merge” of polyline which is very relevant when two or
more polylines are positioned on the same section of the real
line network. All these moves are illustrated in Fig. 4.

5. RESULTS

This section provides results of the algorithm described in
Section 4 on three remotely sensed images, with an initial-
ization by the empty configuration.
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Figure 4: Reversible moves.
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Figure 5: Road extraction from a satellite image (256 x 256
pixels).

The first image - see Fig. 5 - is a satellite image (SPOT
Panchro, resolution: 10 m), where the sought-after carto-
graphic item is the road network. The extraction algorithm
provides a smooth and continuous line network with few
omissions and no over detection. It extracts quite well not
only the main roads, but also one dirt track which is not as
rectilinear and clearly contrasted with respect to the back-
ground as the main roads.

The second image - see Fig. 6 - is a hight resolution
(0.5 m) aerial image provided by French Mapping Institute
(IGN), where the sought-after cartographic item is the road
network. The task is not straightforward here, due to "ge-
ometrical noise" (for instance, trees near roads). Nearly all
the roads have been detected. There is only one overdetection
(near a house) and this overdetection is coherent with our a
priori knowledge on road network topology as it is between
two roads of the same orientation. The detection of junctions
between roads is well done. Only two small breaks are due
to the presence of trees between two polylines of different
width. Polylines of varying width should be considered in
the near future.

The last image - see Fig. 7 - is a satellite image (SPOT
XS2, resolution: 20 meters) of Guinea provided by the
French Geological Survey (BRGM), where the sought-after
cartographic item is the hydrographic network. The latter is
spotted by the presence of trees near rivers, and is named
riverine forest. The extraction algorithm provides a continu-
ous line network with no omission and just a few overdetec-
tions. Moreover, the line network extracted is very close to
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Figure 6: Road extraction from an aerial image (892 x 652
pixels).

data extracted network

Figure 7: River extraction from a satellite image (300 x 300
pixels).

the real one despite of the large local curvature of this net-
work.

These results show that the polyline process CAROLINE
is adapted to the extraction of line network. In particular, the
detection of sinuous networks is more accurate and the road
and river junctions are better detected than with the previous
segment processes (see [14] for more details).

6. CONCLUSION

We have proposed in this paper a relevant method to perform
line network extraction from satellite and aerial images. This
is a fully automatic method without any initialization. In-
deed, the use of a simulated annealing using a RIMCMC
algorithm for the optimization allow us to initialize the algo-
rithm with the empty configuration. The prior model leads
to continuous extracted line networks with few omissions
and overdetections. Results on remotely sensed images have
shown that the polyline process CAROLINE is fitted to the
extraction of sinuous networks and models correctly the road

and river junctions thanks to the definition of a polyline con-
nection. Moreover, the data term seems to perform well for
different types of images. We will focus in the near future on
the definition of an inhomogeneous reference process based
on data that would be better adapted to our problem. Indeed,
it would allow to accept more correctly positioned segment
at the beginning of the algorithm. Moreover, the proposed
stochastic modeling allows us to consider working in a frame
of data fusion in order to benefit from the contribution of
several sources (for instance, multi-sensor or multi-temporal
data).
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