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ABSTRACT
We have put Hinich’s asymptotic tests for Gaussianity and linear-
ity under scrutiny, and we show that these tests suffer from severe
statistical problems. We propose the use of carefully designed sur-
rogate data to ensure correct false alarm rate. Using theoretical
considerations about estimation of higher order spectra, we propose
new high-precision detections statistics for Gaussian and linear sig-
nals. Results from synthetic and experimental data demonstrate the
applicability of the proposed tests.

1. INTRODUCTION

The power spectral density, or the power spectrum, is an indispens-
able quantity when describing the second-order statistics of station-
ary stochastic processes. If the process considered has a Gaussian
amplitude distribution, it is well known that the mean value and the
power spectrum characterize the process completely. If the process
under study is non-Gaussian, or if it is the result of nonlinear dy-
namics, knowledge of the mean value and the power spectrum is
not sufficient to fully characterize the process. Under such circum-
stances, one may have to consider higher order spectra (HOS) [5].

HOS based tests for Gaussianity and linearity of stationary pro-
cesses are most often based on the complex valued skewness func-
tion [5]

Γ( f1, f2) =
S3( f1, f2)√

S2( f1)S2( f2)S2( f1 + f2)
, (1)

where S2( f ) and S3( f1, f2) is the power- and bispectrum, respec-
tively. Note that Γ( f1, f2) in Eq. (1) has been referred to as bi-
coherence, although it is not a true coherence as the related and
generalized quantities defined in [14, 9].

Theoretically, a Gaussian process has a zero valued skewness
function (and bispectrum), and a linear non-Gaussian time series
has a non-zero constant magnitude skewness function [5]. Rao and
Gabr [17] proposed hypothesis tests for both Gaussianity and lin-
earity, and Hinich [10] constructed asymptotic tests that are well
established in time series analysis of economic data [1].

In this paper we present the following. In Section 2 we review
HOS theory and estimation. In Section 3 we briefly review Hinich’s
asymptotic tests and we describe the theoretical problems with his
approach. In Section 4 we propose and illustrate our proposed tests.
The applicability of our tests are demonstrated in Section 5 using
real data from a 1/ f noise experiment. Finally, our conclusions are
presented in Section 6.

2. HIGHER ORDER SPECTRA

The Cramér spectral representation of a zero-mean discrete time
stochastic process x[n] is given by [3]

x[n] ,

1/2∫

−1/2

e j2π f ndX̃( f ), (2)

where dX̃( f ) is the corresponding stochastic increment process, f
is the frequency and j =

√
−1.

As is well known, the Fourier transform does not in general ex-
ist for a stochastic process. In that sense, the spectral representation
in Eq. (2) is a very powerful extension that allows the traditional
frequency understanding for Fourier analysis to be valid also for
stochastic processes. The randomness of the time process is repre-
sented through the increment process dX̃( f ).

Given that the process’ 2nd and 3rd order moments are abso-
lutely summable, the integrated power- and bispectrum can be de-
fined as [6]

S2( f )d f = E
[
dX̃( f )dX̃∗( f )

]
(3)

S3( f1, f2)d f1d f2 = E
[
dX̃( f1)dX̃( f2)dX̃∗( f1 + f2)

]
, (4)

where ∗ denotes complex conjugate operation.
Given a real valued finite length time series x[n], for n =

0,1, . . . ,N − 1, drawn from a stationary zero-mean stochastic pro-
cess, the basic direct estimate of power and bispectrum is the peri-
odogram and biperiodogram, respectively, defined as [6]

Ŝper
2 [k] =

1
N
|X [k]|2 ; k = 0,1, . . . ,N−1 (5)

Ŝper
3 [k, l] =

1
N

X [k]X [l]X∗[k + l] ; k, l = 0,1, . . . ,N−1 (6)

where X [k] = ∑N−1
n=0 x[n]exp (− j2πkn/N) is the discrete Fourier

transform, and k corresponds to the discrete frequency fk = k/N.
The statistical properties of Ŝper

2 [k] and Ŝper
3 [k, l] are well under-

stood. Asymptotically (N → ∞) these estimators are unbiased, and,
assuming a Gaussian time series, their variances can be approxi-
mated as [6]

Var
[
Ŝper

2 [k]
]

= (S2[k])
2 (7)

Var
[
Ŝper

3 [k, l]
]

= NS2[k]S2[l]S2[k + l], (8)

for k, l,k + l 6= 0,N/2, where S2[k] is the true power spectrum of
the process. Also, the (bi-) periodogram estimates for two distinct
harmonic (pairs of) frequencies are asymptotically uncorrelated [6].

The inconsistency and anti-consistency of Ŝper
2 [k] and Ŝper

3 [k, l],
shown in Eq. (7) and Eq. (8), respectively, clearly shows that these
raw estimates should always be avoided. The variance of Ŝper

2 [k]
and Ŝper

3 [k, l] can obviously be reduced by frequency smoothing as

Ŝsm
2 [k] =

k+a

∑
k′=k−a

W2[k′]Ŝ
per
2 [k′] (9)

Ŝsm
3 [k, l] =

k+a

∑
k′=k−a

l+a

∑
l′=l−a

W3[k′, l′]Ŝ
per
3 [k′, l′], (10)

where W2[k] and W3[k, l] is the second and third order smoothing
window, respectively. Approximately unbiased estimates are ob-
tained for normalized smoothing windows.
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Theoretically, the highest variance reduction for a specified
smoothing bandwidth corresponds to filtering the increment pro-
cess dX̃( f ) through a normalized ideal bandpass filter centered at
f . For Ŝsm

2 [k] this can easily be approximated by using a uniform
smoothing window, W2[k] = 1/(2a + 1) for |k| ≤ a. For Ŝsm

3 [k, l],
the ideal bandpass filtering leads to the third order uniform smooth-
ing window, which has a hexagonal region of support [16, 3],

W3[k, l] =
{

1/C ; k, l,k + l ≤ a
0 ; otherwise, (11)

where C is the number of non-zero elements in W3[k, l]. This hexag-
onal shape can easily be identified using the ideal bandpass filtered
increment process in the definition of the bispectrum in Eq. (4).

Assuming a Gaussian process where the true HOS are approx-
imately constant within the smoothing bandwidth, the variance re-
duction factor for uniform smoothing windows are identical to the
number of frequency points averaged. The averaging clearly makes
nearby frequency estimates correlated, reducing the frequency res-
olution of the HOS estimates.

It is well known that Ŝsm
2 [k] is asymptotically distributed as a

chi-square random variable, where the number of degrees of free-
dom is proportional to the smoothing bandwidth. From [15] we
have that Ŝsm

3 [k, l] is asymptotically distributed as a complex Gaus-
sian random variable inside the principal domain (PD) [6] of the
bispectrum.

A skewness function estimate Γ̂sm[k, l] can now easily be ob-
tained by using Ŝsm

2 [k] and Ŝsm
3 [k, l] in the definition of Γ[k, l] in Eq.

(1). Theoretical analysis of the variance of skewness function esti-
mates commonly ignores the variability of the power spectrum esti-
mates [11, 14, 10], making Γ̂sm[k, l] asymptotically complex Gaus-
sian distributed. The argument for this statistical reasoning is that
the variability of the bispectrum estimate in the numerator is usually
significantly larger than the power spectral estimates in the denom-
inator.

3. CLASSICAL ASYMPTOTIC TESTS

Hinich’s tests for Gaussianity and linearity [10] are based on the
smoothed periodogram and biperiodogram. The standard uniform
smoothing window W2[k], with a smoothing bandwidth such that
2a + 1 = Nc and c is slightly above 0.5, was recommended for the
Ŝsm

2 [k] [10]. But, in contrast to the hexagonal shaped uniform win-
dow in Eq. (11), a quadratic smoothing window W �

3 [k, l] = 1/M2,
for |k|, |l| ≤ a, was applied for bispectrum estimation, Ŝ�

3 [k, l].
Instead of using the skewness function directly for Gaussian-

ity and linearity hypothesis tests, a related unity variance complex
Gaussian distributed quantity β̂ [k, l] was defined as [10]

β̂ [k, l] =
1√

N(2a+1)−2

Ŝ�
3 [k, l]√

Ŝsm
2 [k]Ŝsm

2 [l]Ŝsm
2 [k + l]

. (12)

Ignoring the variability of Ŝsm
2 [k], it is easy to verify the unity vari-

ance of Eq. (12) using Eq. (8) and W �
3 [k, l]. For boundary points in

PD, the normalization factor 1/
√

N(2a+1)−2 can be adjusted to
ensure unity variance [10], but since all points outside the PD are
ignored in Ŝ�

3 [k, l] a downward bias near the PD border is expected.
Note that for non-white processes, modification of the denominator
in Eq. (12) leads to a more precise variance expression [8].

The test statistic for the Gaussianity test is [10]

S = ∑
[k,l]∈PD

2
∣∣∣β̂ [k, l]

∣∣∣
2
, (13)

where the summation only includes uncorrelated bifrequency sam-
ples. For a Gaussian process we have that 2|β̂ [k, l]|2 is approxi-
mately central chi-square distributed with two degrees of freedom.

The Gaussian hypothesis can thus be rejected if S > S′, where S′ is
defined by the α significance level of the χ2

2P(0) distribution.

If the process is non-Gaussian and linear, 2|β̂ [k, l]|2 is non-
central chi-square distributed with two degrees of freedom. The
non-centrality parameter d can be estimated from the uncorrelated
β̂ [k, l] in the PD given as [10]

d̂ =
1
P ∑

[k,l]∈PD
2
(∣∣∣β̂ [k, l]

∣∣∣
2
−1

)
, (14)

which again has to be modified for points outside PD [10].
If the magnitude of the bicoherence varies within the PD, the

non-central parameter d is not constant. The linearity test thus com-
pares the interquartile range R of a χ2

2P(d̂) distribution with the sam-
ple interquartile range Rs of the uncorrelated 2|β̂ [k, l]|2 where all
points in the square averaging are inside PD. The sample interquar-
tile range is assumed to be normal distributed with R as mean and
σ0 as variance, so that

Z =
Rs −R√

σ2
0

(15)

is standard normal distributed. Linearity is rejected if Rs > R, and
the significance level is found using the upper α level of Z.

4. IMPROVING THE CLASSICAL TESTS

There are two important statistical problems connected with
Hinich’s tests: The estimation of β̂ [k, l] in Eq. (12) and the esti-
mation of the non-central parameter d in Eq. (14).

The square shaped region of support in W �
3 [k, l] is conceptually

wrong and should never have been applied. This may lead to signif-
icant bias in the β̂ [k, l] for non-white processes, as we will illustrate
later in this paper using Monte Carlo simulations and synthetic time
series. The biased bispectrum estimate leads to an increased false
alarm rate in both the Gaussianity and linearity test by Hinich. The
downward bias introduced near the PD boundary, will furthermore
reduce the power of the linearity test since only points of β̂ [k, l]
where the full smoothing region are inside PD can be applied.

The variance of β̂ [k, l] is also a critical factor in Hinich’s tests.
For non-Gaussian processes, there exist no general approximation
of the variance of HOS estimates. The use of approximations based
on a Gaussian assumption when testing for linearity, which basi-
cally is done only when the process already is found to be non-
Gaussian, is somewhat awkward. An increased variance can be ex-
pected for non-Gaussian processes, which clearly leads to a higher
false alarm rate in the linearity test.

The estimation of the non-centrality parameter d in Eq. (14)
clearly implies that the theoretical interquartile range R in Hinich’s
linearity test is a random variable. And since both R and Rs are
based on the same β̂ [k, l], with some extra boundary points for R,
these two random variables have to be correlated. This leads to
Var[Z] < 1, which reduces the false alarm rate in the linearity test.

Although the estimation of β̂ [k, l] and d contribute in different
directions for the false alarm rate, there is no reason to believe that
they will counterbalance and provide the correct false alarm rate.
Thus, the discussion of the power of Hinich’s linearity test, as in
e.g. [1], is clearly useless.

4.1 Skewness function estimation

To improve Hinich’s tests we first apply the standard hexagonal
shaped smoothing window W3[k, l] in Eq. (11) for the estimation
of Ŝsm

3 [k, l]. An unbiased estimate along the boundary of PD can be
obtained by fully ignore the points outside the PD, and normalize
W3[k, l] according to the number of bifrequency points averaged.
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Figure 1: Upper left: Ŝsm
2 [k]. Upper right: |Γ̂[k, l]| for WNG. Lower

left: |Γ̂[k, l]| for LNG. Lower right: Uncorrelated |Γ̂[k, l]| for LNG.

We have used synthetic data to illustrate our choice of W3[k, l].
Based on zero-mean unity variance white Gaussian noise, xG[n]
(WG), and convolution (?) through a second order linear autoregres-
sive filter h[n], with parameters a1 = −0.8 and a2 − 0.64, we have
generated the following test signals: White non-Gaussian noise
xNG[n] = (x2

G[n]−1)/
√

2 (WNG), linear Gaussian process xLG[n] =
xG[n] ? h[n] (LG) and a linear non-Gaussian process xLNG[n] =
xNG[n]?h[n] (LNG). Using N = 512 data samples for each test sig-
nals, we estimated the skewness function using both quadratic and
hexagonal smoothing, with bandwidth from c = 0.6, and applied
Hinich’s tests for R = 1000 Monte Carlo repetitions.

In the upper left corner of Fig. 1, we have shown Ŝsm
2 [k] for the

four signals averaged over the R = 1000 repetitions. From these re-
sults, we can not distinguish between the WG and the WNG signals,
nor between the LG and the LNG signals.

In the upper right plot of Fig. 1, we have shown |Γ̂�[k, l]| and
|Γ̂sm[k, l]|, in the upper and lower triangular PD, respectively, for the
WNG signal averaged over all repetitions. As expected, both esti-
mators give a constant magnitude inside the PD, but the unbiasness
of |Γ̂sm[k, l]| makes boundary points useful for linearity tests.

Turning to the LNG, shown in the lower left plot of Fig. 1, we
find significant deviation from the expected constant magnitude in-
side the PD in the |Γ̂�[k, l]| case. For the linearity test the quadratic
smoothing in |Γ̂�[k, l]| clearly contributes to false alarms. Since the
variance contribute in a similar way to the Gaussianity test, the false
alarm rate will also increase in this test. Introducing the hexagonal
smoothing the bias is strongly reduced, as shown for |Γ̂sm[k, l]|.

The optimal selection of uncorrelated samples in PD are shown
in the lower right plot in Fig. 1, for |Γ̂�[k, l]| and |Γ̂sm[k, l]| using
the LNG signal. This clearly shows that there are more uncorre-
lated samples for hexagonal smoothing compared to the quadratic
smoothing, using the same smoothing bandwidth. Note that the in-
creased frequency resolution in |Γ̂sm[k, l]| is obtained with the clas-
sical tradeoff of an increased variance in the estimate.

4.2 Correct false alarm rate
To our knowledge, there exist no valid general variance expressions
for HOS estimation for non-Gaussian processes. Without these ex-
pressions, there is no way to construct an asymptotic linearity test
based on HOS.

To compensate for the lack of variance expressions, we pro-
pose to use the method of surrogate data [19]. The surrogate data
should retain the dynamics of the original time series and, most im-

portantly, should also fulfill the null hypothesis under study. The
classification method then goes as follows: Let Z0 be the measured
discrimination statistic for the original time series. Then calculate
the discriminating statistic for the i-th set of the surrogate data Zi,
for i = 1,2, . . . ,NZ . For one-sided rejection tests, as will be applied
in the Gaussianity and linearity test in this paper, we can reject the
null hypothesis at the significance level α = 1/(NZ +1) if the value
of Z0 is above all the surrogate data Zi.

The random phase (RPH) method [19] is a well known proce-
dure the generates Gaussian (and linear) surrogate data. The RPH
surrogate method is easy to implement, it has identical power spec-
trum as the original data and it works well in most cases [18]. Thus,
we propose to use these surrogates to ensure the correct false alarm
rate in HOS based Gaussianity tests.

The recently proposed iterative algorithm called the linearly fil-
tered non-Gaussian (LFNG) surrogate method, generates satisfying
data for HOS based linearity tests [2]. In contrast to other existing
methods for generation of non-Gaussian surrogate data, this method
provides surrogate data with almost identical power spectrum and
skewness (E[x3[n]]) as the original time series, while also restricting
the surrogate data to be linear. Due to the space considerations this
method will not be explained further in this paper, and interested
readers can obtain a copy of [2] from the leading author.

4.3 Simplified detection statistic
Since the method of surrogates effectively provides a measure of
significance regardless of detection statistic, we instead propose to
use the insample mean and variance of all uncorrelated points in
PD of |Γ̂sm[k, l]| as our detection statistics for Gaussianity and lin-
earity, respectively. Since |Γ̂sm[0,0]| generally has a significantly
higher variance than other points in PD, we ignore this point in our
calculation of the insample mean and variance.

These detection statistics mirrors the basic theoretical back-
ground of HOS based Gaussianity and linearity test [5, 17, 10], they
are easy to implement, and the estimated |Γ̂sm[k, l]| can be used di-
rectly to visualize the detection results.

In Table 1, we present the rate of non-Gaussian and non-linear
detections using Hinich original tests and our proposed tests on the
four previously discussed syntectic time series. The emphasized
results clearly show that Hinich’s Gaussianity test fail to provide
the correct false alarm rate for LG, and that his linearity test has
extremely high false rates for both WNG and LNG. The proposed
tests have correct false alarm rates in all cases, and they provide a
complete non-Gaussian detection of all the WNG and LNG signals.

Time series DHin
NG DHin

NL DNew
NG DNew

NL
WG 4.4 3.6 5.7 5.7
WNG 100 59.0 100 5.6
LG 18.3 3.4 5.9 3.2
LNG 100 70.7 100 6.6

Table 1: Detection rate [%] of non-Gaussian and non-linear classi-
fications using R = 1000 synthetic test signals for α = 5%. Signifi-
cant deviation from 5% is expected for detection of non-Gaussianity
in WNG and LNG, respectively.

5. EXPERIMENT

As an example application of our tests we have used voltage time
series of low-frequency noise from silicon-germanium (SiGe) het-
erojunction bipolar transistors (HBT). Extensive research in this
field (e.g [13, 12]) has been carried out using classical Fourier-based
spectral analysis methods by means of specialized hardware, such
as the HP-3561A dynamic signal analyzer.

A 0.18-µm SiGe HBT technology was used in this investiga-
tion. Details of this technology can be found in [7], and the mea-
surement setup is described in [4]. We have concentrated on the
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Figure 2: Upper left: First part of time series. Upper right:
Power spectrum estimate from HP3561A Dynamic Signal Ana-
lyzer. Lower left: |Γ̂sm[k, l]| of original and LFNG surrogate data.
Lower right: Detection statistics (α = 0.01%).

smallest HBTs from this technology generation with an emitter area
of 0.256µm2 , biased at 1µA base current and VCB = 0V .

The first 0.1 seconds of the 30 seconds noise time series is
shown in the upper left part of Fig. 2. A typical multilevel Ran-
dom Telegraph Signal (RTS) is observed, which is characterized by
sudden “jumps” between several discrete levels. The time spent at
each level is characterized by time constants that can be found as
bumps at corresponding frequencies (around 50 and 200 Hz) in the
power spectrum estimates, as shown in the upper right part of Fig.
2. The spectrum shown here is the averaged periodogram estimate
from the HP-3561A.

The physical mechanism behind the RTS noise is believed to be
the trapping and de-trapping of carriers by defects. Controversy has
been raised whether the traps are independent or not. The lower left
part of Fig. 2 shows the skewness function estimate of original noise
data, and LFNG surrogate data. We focus on frequencies below 1
kHz because the two main bumbs in the spectrum are contained in
this frequency range. The surrogate data skewness function has a
nearly constant amplitude, while the real data skewness function is
clearly non-constant and has a peak below 200 Hz. This indicates
coupling between the frequencies in the noise signal, and hence sug-
gests that the traps causing the RTS noise could be coupled and not
acting independently.

The lower right plot of Fig. 2 shows the Gaussian and linear de-
tection statistics of the original, RPH and LFNG surrogate data. The
strong separation between the original and RPH insample mean,
clearly shows that the signal under study is non-Gaussian. Sim-
ilarly, the distance between the original and the LFNG insample
variance strongly indicates that the signal is non-linear.

6. CONCLUSION

Hinich’s asymptotic tests for Gaussianity and linearity suffer from
severe statistical problems. Thus, any discussion of the power of
these tests is useless, and any classification of time series based on
Hinich’s tests have to be carefully reconsidered.

Using random phase and linearly filtered non-Gaussian surro-
gate data, the correct false alarm rates are obtained in Gaussianity
and linearity tests, respectively.

Unbiased estimation of the skewness function, leads to intu-
itive and effective detection statistics for Gaussianity and linearity.
Results from synthetic and experimental time series clearly demon-
strate the applicability of our proposed tests.
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