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ABSTRACT 
In this paper we propose a new design criterion for subband 
adaptive filters (SAFs). The proposed multiple-constraint 
optimization criterion is based on the principle of minimal 
disturbance, where the multiple constraints are imposed on 
the updated subband filter outputs. Compared to the classi-
cal fullband least-mean-square (LMS) algorithm, the sub-
band adaptive filtering algorithm derived from the proposed 
criterion exhibits faster convergence under colored excita-
tion. Furthermore, the recursive tap-weight adaptation can 
be expressed in a simple form comparable to that of the 
normalized LMS (NLMS) algorithm. We also show that the 
proposed criterion is related to another known weighted 
criterion. The efficacy of the proposed criterion and algo-
rithm are examined and validated via mathematical analysis 
and simulation. 

1. INTRODUCTION 

Among various adaptive filtering algorithms, the LMS algo-
rithm is the most popular and widely used because of its sim-
plicity and robustness. However the LMS algorithm suffers 
from slow convergence when the input signal is highly corre-
lated. Adaptive filtering in subbands has been proposed to 
improve the convergence behavior of the LMS algorithm 
under colored excitation [1-5]. In subband adaptive filtering, 
the input signal and desired response are band-partitioned 
into almost mutually exclusive subband signals. This feature 
of the SAF permits the manipulation of each subband, in 
such a way that their properties (e.g., variance) can be ex-
ploited [5] allowing each subband to converge almost sepa-
rately on various modes [3], and thus improving the overall 
convergence behavior. Yet, band edge effects limit the con-
vergence rate of the conventional SAFs [2, 7]. 

The principle of minimum disturbance [5] states that: 
from one iteration to the next, the tap weights of an adaptive 
filter should be changed in a minimal manner, subject to a 
constraint imposed on the updated filter output. Based on this 
principle, we formulate a novel design criterion for the SAF 
as a constrained optimization problem involving multiple 
constraints imposed on the updated subband filter outputs. 
From one iteration to the next, these multiple subband con-
straints force each of the almost mutually exclusive subbands 
to converge almost independently without any influence from 
other subbands. Furthermore, by virtue of critical sub-
sampling, the computational load of the proposed algorithm 

remains almost unchanged when the number of subbands is 
increased. Hence, the subband algorithm derived from this 
design criterion, called the normalized SAF (NSAF) algo-
rithm, is expected to possess attractive convergence behavior 
under colored excitation, and remain computationally effi-
cient. 

Note that the major issue considered in this paper is to 
improve the convergence behavior of the LMS algorithm 
rather than to reduce its computational complexity as empha-
sized in the conventional SAF structure [1, 2]. Another 
unique characteristic of the proposed NSAF algorithm is that 
the error signals are estimated in subbands, whereas the coef-
ficients that are explicitly adapted are the fullband tap 
weights of the modeling filter. This adaptive weight-control 
mechanism is different from that in the conventional SAF 
structure where each subband has its own sub-filter and adap-
tation loop. 

The paper is organized as follows. In section 2, we es-
tablish proper definitions for various subband signals, which 
facilitate the formulation of the proposed criterion and deri-
vation of the NSAF algorithm in Section 3. In Section 4, we 
relate the proposed criterion with a known weighted criterion 
[3, 4]. In Section 5, we present some simulation results to 
demonstrate the convergence behavior of the NSAF algo-
rithm. Finally, Section 6 concludes the paper. 

2. DECIMATED SUBBAND SIGNALS 

Fig. 1 shows a subband structure where the desired response 
and filter output, ( )d n  and ( )y n , are partitioned into N  sub-
bands by mean of analysis filters 0 1( ), , ( )NH z H z−… . The sub-
band signals, ( )id n  and ( )iy n  for 0, , 1i N= −… , are critically 
sub-sampled to a lower rate commensurate with the corre-
sponding bandwidth of the subband signals. Note that we use 
the variable n  to index the original sequences, and k  to 
index the decimated sequences. Sampling rate of the deci-
mated sequences are N  times slower than the original se-
quences. Assuming that the modeling filter l( )kw  is station-
ary (i.e., adaptation of its tap weights is frozen), we can 
transpose it to follow the analysis filter bank as shown in Fig. 
2. The :1N  decimators retain only those samples of ( )iy n  
that occur at instants of time equal to multiples of N . Hence, 
the decimated filter output at each subband can be written as 
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is the input data vector for the thi  subband, l( )k =w   
l l l

0 1 1( ), ( ), , ( )
T

Mw k w k w k−  …  is the fullband adaptive tap-
weight vector, and the superscript T  denotes matrix transpo-
sition. Now, we define the decimated subband error signal 

,D ( )ie k  as the difference between the decimated subband de-
sired response ,D ( )id k  and filter output ,D ( )iy k : 

l
,D ,D( ) ( ) ( ) ( ) , 0, , 1.

T

i i ie k d k k k i N= − = −w u …      (3)  
Equations (1) and (2) indicate that, at every time instant k  
each data vector ( )i ku  is packed with N  new samples and 
M N−  old samples to produce a single sample of ,D ( )iy k . In 
this and subsequent sections, we assume that all signals and 
filter coefficients are real. 

3. THE PROPOSED NSAF ALGORITHM 

Based on the principle of minimum disturbance [5], we for-
mulate the design criterion as a multiple-constrained optimi-
zation problem as follows: 

Minimize the squared Euclidean norm of the change in 
the tap-weight vector  

l l l 2
( 1) ( 1) ( ) ,f k k k + = + − w w w (4)  

subject to the set of N  constraints imposed on the 
decimated filter output 

l
,D( 1) ( ) ( ) for 0, , 1.

T

i ik k d k i N+ = = −w u … (5)  
Applying the method of Lagrange multipliers [5] on the pro-
posed criterion, we obtain the recursive relation for updating 
the tap-weight vector: 

l l 1

0

1( 1) ( ) ( ),
2

N

i i
i

k k kλ
−

=

+ = + ∑w w u (6)  

where the iλ  are the  Lagrange  multipliers  pertaining  to the  

 
 
 
 
 
 
 
 
 
 
multiple constraints described in  (5). Substitute (6) into the 
N  constraints of (5) and solve for the Lagrange multipliers, 
we get 

1
D2 ( ) ( ) ( ),T k k k−

=   λ U U e (7)  
where [ ]0 1 1, , , T

Nλ λ λ −=λ …  is the 1N ×  Lagrange vector,  
[ ]0 1 1( ) ( ), ( ), , ( )Nk k k k−=U u u u…  is the M N×  data matrix, 

and [ ]D 0,D 1,D 1,D( ) ( ), ( ), , ( ) T
Nk e k e k e k−=e …  is the 1N ×  error 

vector. It is shown in Section 3.1 that if the subband input 
signals are orthogonal at zero lag, the off-diagonal elements 
of the matrix ( ) ( )T k kU U  are negligible. With this diagonal 
assumption, (7) essentially reduces to a simple form: 
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Combining the results in (6) and (8), we obtain the tap-
weight adaptation equation of the NSAF algorithm: 
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It is clear that, this tap-weight adaptation equation is in a 
simple form comparable to that of the NLMS algorithm. 

A positive step-size parameter µ  is introduced in the re-
cursive relation to exercise control over the change in the tap-
weight vector. Following the procedure outlined in [5], we 
analyze the convergence behaviour of the proposed subband 
algorithm based on mean-square deviation. In the absence of 
the disturbance, i.e., the ( )nη  term in Fig. 1 is negligible, the 
necessary and sufficient condition for the convergence in the 
mean-square is that the step size parameter µ  must satisfy 
the double inequality: 

0 2.µ< < (10)  
Note that the constrained optimization criterion defined 
above involves N  equality constraints; thus, the number of 
subbands N  (i.e., number of constraints) must be smaller 
than the length of the adaptive tap-weight vector M. This 
requirement sets an upper limit on the number of allowable 
subbands in the proposed NSAF algorithm. 

3.1 The Diagonal Assumption 
Consider the subband structures in Fig. 2. For two arbitrary 
subband signals ( )iu n  and ( )pu n , where , 0, , 1i p N= −…  and 
i p≠ , their cross-correlation at zero lag 0l =  can be formu-
lated as 

( )
uu2

1(0) ( ) ( ) ( ) ,
2

ipjj j j
ip i pH e H e e e dφ ωω ω ω

π
γ ω

π
= Γ∫ (11)  

where ( )j
iH e ω  and ( )j

pH e ω  are the magnitude responses 
of the thi  and thp  analysis filters, respectively, 

( ) ( ) ( )ip i pφ ω φ ω φ ω= −  is the phase difference between the 
analysis filters, and  uu ( )je ωΓ  is the  power  spectrum  of  the  

Fig. 2. The input signal is split into subband 
signals before going through the filters l( )kw  
and decimators.  

Fig. 1. A subband structure showing the subband 
desired responses, subband filter outputs, and sub-
band error signals.  
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input signal ( )u n  which is assumed to be stationary. The 
magnitude response ( ) ( )j j

i pH e H eω ω  and phase difference 
( )ipφ ω  play important roles in characterizing the cross-

correlation function (11). Particularly, if the analysis filter 
bank is paraunitary [6], the subband input signals are or-
thogonal at zero lag, (0) 0ipγ = . Now, with the assumption 
that the input signal ( )u n  is ergodic, the cross-correlation at 
zero lag (0)ipγ  can be approximated with the time average 
� (0) ( ) ( ) /T

i pip k k Mγ = u u . So, if the subband input signals are 
orthogonal at zero lag, the off-diagonal elements 

�( ) ( ) (0)T
i p ipk k Mγ=u u  of the matrix ( ) ( )T k kU U  are much 

smaller than its diagonal elements �( ) ( ) (0)T
i i iik k M γ=u u  im-

plying that ( ) ( )T k kU U  can be well approximated by a di-
agonal matrix. 

3.2 Computational Complexity 

The proposed NSAF algorithm is summarized in Table I. 
Note that a small positive constant δ  is introduced in the tap-
weight adaptation equation to avoid numerical difficulties 
when the input signal level is too low. By virtue of critical 
sub-sampling, the tap-weight vector is adapted at a lower rate 

s1 NT  compared to full-band sampling rate s s1F T= . Hence, 
the number of multiplications incurred for error estimation 
and tap-weight adaptation during a single sampling period sT  
is always 3M  for an arbitrary number of subbands N  (as 
shown in Table I). Apart from this, the NSAF algorithm re-
quires an additional 3NL  multiplications for the analysis and 
synthesis filter banks, giving us a total of 3 3M NL+  multi-
plications during a single sampling period sT . Hence, com-
pared to the fullband NLMS algorithm, the NSAF algorithm 
requires a slight number of extra multiplications (i.e., an ad-
ditional 3NL  multiplications) for the filter banks implemen-
tation. 

4. SAF STRUCTURES 

Recently, an innovative SAF structure has been proposed in 
[3, 4] where the subband algorithms are derived by optimiz-
ing a weighted criterion defined as 

 

 
1 1
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The scaling factors iα  for 0, , 1i N= −… , are proportional to 
the inverse of the power of the subband input signals. The 
adaptive weight-control mechanisms proposed in [3, 4] are 
similar to that proposed in this paper, where the fullband tap 
weights of the modeling filter l( )kw  are adapted instead of 
sub-filters as in the conventional SAF structure (in [4], the 
fullband filter is decomposed into polyphase components). If 
we set the scaling factors iα  equal to  l 221 ( ) 1/ ii k Mσ=u , 
where l

2
iσ  is the variance estimate of the thi  subband, the 

tap-weight adaptation equation of the NSAF coincides with 
that presented in [3, 4]. This implies that the multiple-
constraint optimization criterion proposed in this paper is 
related to the weighted criterion (12). 

Both criteria bring insight into subband adaptive filtering 
from different perspectives. Particularly, the proposed crite-
rion reveals the necessary conditions (i.e., the subband input 
signals must be orthogonal at zero lag, and the number of 
subbands N M< ) to be imposed on the filter banks, whereas 
the weighted criterion shows that the error performance sur-
face is characterized by a weighted correlation matrix [3, 4]. 
From the proposed criterion, we also find that the appropriate 
scaling factor is l 2

1/ ii Mα σ= . With this choice of scaling fac-
tor, the SAF is stable as long as the step-size parameter is 
bounded within the double inequality 0 2µ< < . 

It is commonly known that the condition number of a 
correlation matrix is bounded by the spectral dynamic range 
of the signal. Fig. 3(a) shows the power spectrum of an 
AR(2) random process with coefficients ( )1.0, 1.6, 0.81− . The 
spectral dynamic range of the AR(2) process is 31.9 dB. It 
can be shown that the power spectrum characterizing the 
weighted correlation matrix can be formulated as 

l

1 2

w uu2
0

1( ) ( ) ( ).
N

j j j
i

i i

e H e e
M

ω ω ω

σ

−

=

Γ = Γ∑    (13)  

Equation (13) indicates that the power spectrum of the input 
signal, uu ( )je ωΓ , is partitioned into N overlapping subbands 
which are than normalized with their corresponding subband 
energies. Recombination of these normalized partitions 

Table I: Summary of the NSAF algorithm 
Parameters and variables Computation smultiplications T  

For s0,1,2, , at 1 processing raten T= …   
Band-partitioning:  

( ) ( ), 0, , 1T
i iu n n i N= = −h u …  NL  
( ) ( ), 0, , 1T

i id n n i N= = −h d …  NL  
Synthesizing:  

1

0
( ) ( )

N
T
i i

i
e n n

−

=

=∑g e  
NL  

For s0,1,2, , at 1 processing ratek NT= …   
Error estimation: 

l
,D ,D( ) ( ) ( ) ( ), 0, , 1

T

i i ie k d k k k i N= − = −w u …  

Tap-weight adaptation: 

( )M N M
N
×

=  

filter lengthM =  
number of subbandsN =  
step-size parameter, 0< <2µ µ=  
length of the analysis filters  and

      synthesis filters 
i

i

L= h
g

 

positive constantδ =  
[ ]( ) ( ), ( 1), , ( 1) Tn u n u n u n L= − − +u …  
[ ]( ) ( ), ( 1), , ( 1) Tn d n d n d n L= − − +d …  
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[ ]( ) ( ), , ( 1) T
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yields a flatten power spectrum, w ( )je ωΓ , as shown in Fig. 
3(b), for the same AR(2) process and N = 8 subbands (using 
the paraunitary filter bank described in the next section). The 
spectral dynamic range is greatly reduced to 6.6 dB yielding 
an improvement in convergence rate. Furthermore, the band 
edge effects which limit the convergence rate of the conven-
tional SAFs [2, 7], are eliminated as well. Hence, the pro-
posed SAF structure is also an improvement over the con-
ventional SAF structure in term of convergence rate. 

5. SIMULATIONS 

In this section, we consider the system identification problem 
(as shown in Fig. 1) to examine the convergence behavior of 
the proposed NSAF algorithm. The unknown system to be 
identified is modeled with the acoustic response of a room 
with 300 ms  reverberation time and truncated to 2048 taps. 
The length of the adaptive tap-weight vector M  is set equal 
to 1024 taps. The unmodeled tail of the acoustic response 
forms a disturbance to the adaptive identification system. 
This disturbance limits the final misalignment to more than 

45 dB− . The excitation signal to the adaptive identification 
system is the AR(2) random process mentioned earlier. 

For the subband structure, we use paraunitary cosine 
modulated filter banks [6] with the length of the prototype 
filter L chosen to be 16, 32, and 64, respectively, for N = 2, 4, 
and 8 subbands. The paraunitary property of the analysis 
filters ensures that the subband input signals ( )iu n  are or-
thogonal at zero lag. Recall that the diagonal matrix require-
ment is fulfilled if the subband signals are orthogonal at 

0l = , (0) 0ipγ = . 
We examine the performances of both NSAF and NLMS 

algorithms by inspecting their normalized misalignment lean-
ing curves. The normalized misalignment is defined as the 
norm of the weight-error vector ( )kε   normalized by the 
norm of the optimum tap-weight vector ow . Fig. 4 shows 
the learning curves of the NLMS and the proposed NSAF 
(for N = 2, 4, and 8) algorithms. The learning rate for both 
algorithms is chosen to be at the middle of the stability bound 
given by the inequality (10), i.e., 1µ = . This choice of step-
size parameter setting enables a fair comparison between the 
NSAF and NLMS algorithms. From the learning curves in 
Fig. 4, it can be noted that the NSAF algorithm provides 
faster convergence than the NLMS algorithm. Furthermore, 
with an increased number of subbands, the convergence rate 
improves considerably. Hence, the proposed algorithm is an 
improvement over the fullband NLMS algorithm. 

6. CONCLUSIONS 

A novel multiple-constraint optimization criterion for the 
SAF is proposed in this paper. Compared to the fullband 
NLMS algorithm, the NSAF algorithm derived from this 
criterion exhibits faster convergence under colored excita-
tion. Regarding computational complexity, the NSAF and 
NLMS algorithms require almost the same number of multi-
plications per sampling period. Furthermore, the proposed 
SAF structure is also an improvement over the conventional 
SAF structure in term of convergence rate.  
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