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Abstract: Wavelet based estimators of the H
parameter for fractional Brownian motion (fBm) is
known to have interesting asymptotical properties.
In this communication, we are studying the
practical point of view by testing this estimator on
finite length fBm signals of N samples. These
signals are generated using the circulant embedding
method (CEM). CEM is fast and exact such that the
synthesis of true fBm signals of long size is easy.
Results show that above N=4096 wavelet based
estimator is unbiased and very close to the Cramer-
Rao lower bound. At the light of this study, and by
combining it to recent results, a practical user guide
to estimate the H parameter of fBm can be
provided: if N is lower than 512 classical maximum
likelihood (ML) should be chosen. For N in the
interval ]512,4096] Whittle ML is to be preferred.
For N above 4096 wavelet based should be
selected. Finally, a precise confidence interval of
the true H parameter can be given.

I. Introduction
Fractional Brownian motion (fBm) of H parameter
in ]0,1[ is a stochastic model for nonstationary
fractal data [1]. FBm is very helpful for modelling
numerous real-world phenomena [2][3][4]. The
main problem that occurs when using fBm as a
model is to properly estimate the H parameter.
Many H estimators are available and the choice of a
method is a difficult issue. Among them, the
wavelet based is one of the most interesting since it
naturally matches the structure of the fBm process
for two reasons. First, although fBm is
nonstationary, its wavelet transform is stationary.
Second, even if fBm is long range dependant, its
wavelet coefficients are almost uncorrelated. From
a practical point of view, two reasons also can
motivate the use of this method: its complexity is
only O(N) and it is known that the wavelet based
estimator has interesting asymptotical properties.
Namely for 1/f processes this estimator is efficient
[5]. However, it is difficult to predict the
experimental performances of the wavelet estimator

for fBm, e. g. when time-limited data of N samples
are of interest. To assess the quality of an analysis
method, experimental studies have to be carried out
[6]. In this last reference, analysis methods including
the wavelet one were compared on fBm synthetic
data for which the true H value is known.
Unfortunately, some of the syntheses were not
exact in principle, and the performance evaluation
of analysis methods was difficult. The quality
assessment of an estimation technique requires
exact fBm signals than can be generated at low
computational cost. Recently, a new method called
the Circulant Embedding Method (CEM) was
proposed to synthesise long and exact fBm data
very easily [7].
In this work, we will experimentally evaluate the
practical efficiency of wavelet based estimators on
true fBm data of N samples generated by the CEM
algorithm. Steaming from this study, and by
combining these results to recent ones [8], a general
framework to precisely measure the H parameter
from a single realization will be proposed. Finally,
a precise confidence interval of the true H
parameter will be given.
This communication is organized as follows. First,
the general background of the study will be
recalled. It includes presentations of fBm main
properties, of the CEM method, of the wavelet
based estimators of the H parameter (focusing on
practical remarks), and on the statistical tests to
assess the efficiency of the estimator. Results will
be presented and a general framework for a precise
estimation of the H parameter will finally be given
as well as the confident interval for the H
parameter.

II. General background
II-1 fBm main properties
Continuous fBm of parameter H in ]0,1[, denoted
BH(t), is defined as an extension of Brownian
motion B(t):
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When H=1/2, fBm is reduce to Brownian motion.
From now on, we will focus on properties of
discrete processes denoted BH[i]. With a starting
value BH[0]=0, fBm is zero mean, Gaussian and
second order nonstationary as attested by its
autocorrelation function:

( ). |j -i| - |j| + |i|   2 = j] [i,r 2H2H2H2

BH

σ (2)

fBm has no derivative, and thus its increments for a
time lag 1 are of interest. They are named fractional
Gaussian noises (fGn), denoted G, and defined as:

1].[i B [i] B [i]B  [i]G HHH −−=∆= (3)

They are zero mean, Gaussian and stationary
processes since their autocorrelation can be written:

( ). |1-k| + |k|2 - |1+k|  2
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 = [k]r 2H2H2H
2
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II-2. The CEM method
The object of this section is to briefly explains the
Circulant Embeding Method (CEM) to easily
generate exact fBm data [7]. As fBm is non
stationary, it is more convenient to first generate
stationary fGn sequences, and to recover from these
signals fBm time series. CEM factorizes an
extension of the covariance matrix R of fGn to
produce random vectors with exactly the required
correlation structure via FFT. The elements of this
Toeplitz matrix R are given by the autocorrelation
function of fGn and are such that:

Rpq= ]qp[rG − =rG[k] for k=0,…,N-1. (5)

CEM consists in embedding R, the N×N correlation
matrix, in a larger 2M×2M nonnegative definite
matrix S such that M=N-1. The first row of S,
denoted s, consists in the entries:

 s[k] = r[k], k=0,…,N-1,
s[2M-k] = r[k], k=1,...,N-2.

(6)

S is then circulant, and any N×N matrix extracted
along the diagonal is a copy of R. Being circulant,
S can be decomposed as S=FDFT where F is the
standard 2M×2M FFT matrix. D is diagonal, and its
diagonal s~ =Fs is obtained by 1D FFT of the
covariance function of the desired process [9]. In
other words, s~  is the discrete PSD of the
stationary model. The final step is the following:
form y=FD1/2x with x~N(0,I), a zero mean
Gaussian random vector with the identity matrix I
as covariance matrix. Then, y has the desired
covariance since

.  )E(
)E()E(

T1/21/2T1/2T1/2

T1/2T1/2T
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==
== (7)

Any vector of N samples extracted out of either the
imaginary or real part of y is fGn since its
covariance matrix is equal to R. The only
distributional errors of the method are due to

inaccuracies in computer arithmetic and to the use
of pseudo-random numbers instead of genuine
ones. Exact realizations of fBm can be recovered
from fGn ones with the initial condition BH[0]=0
following:
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II.3. WAVELET ESTIMATOR
The wavelet based estimator of the H parameter is
one of the most interesting since it naturally
matches the structure of the fBm process. Although
fBm is nonstationary, its wavelet transform is
stationary [10]. Indeed, the variance of the details
signals Dj at a dyadic scale j follows:

.)(2  [n])Var(D
12H

jj
+

∝ (9)

∝  means proportional to. The H parameter can be
directly estimated by linear regression from last
equation:

( )( ) ( ) .constant + j1+2H = [i]D jVar Log2 − (10)

If the number of vanishing moments is greater than 2,
detail signals are almost uncorrelated [10], which is
better if H is to be estimated using last equation. Any
Daubechies wavelet with more than 2 vanishing
moment is suitable [11].
Several elements should be taken into account for
an efficient implementation [10]. First of all, border
effects due to the filtering can lead to wrong values.
To reduce these effects, we chose the smallest
possible filter, that is Daubechies's wavelet of 4
coefficients. In addition, polluted samples are
discarded. Furthermore, and it is the main cause of
error, the relation (9) is only valid in the continuous
case. The sampling introduces a bias in the
estimation of H, especially in the early stages of
decomposition. This leads to underestimate the H
parameter, this difference being smaller when H is
close to 1. We have implemented a correction
which improves the quality of the results [10]. It
consists in balancing the variance of the détail
signals as a function of the chosen wavelet, of the
scale and of the H value according to the
following :

jH

j
)12(

0
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with
.n = [n] D 2

0
H (14)
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γh et γg are the autocorrelation function of the
impulse response of filter H and G of the wavelet

decomposition. It is clear that a precise estimation

H/N 128 256 512 1024 2048 4096 8192 16384 32768
0.2 0.0430 0.0300 0.0212 0.0153 0.0105 0.0075 0.0052 0.00375 0.0027

0.5 0.0553 0.0394 0.0270 0.0193 0.0134 0.0092 0.0065 0.0046 0.0032

0.8 0.0542 0.0395 0.0288 0.0289 0.0145 0.0189 0.0077 0.0056 0.0035

Table 1 : Square root of the Cramer-Rao lower bound for the estimation of the H parameter
as a function of H and N.

Table 2 : Mean H value and standard deviation of the wavelet based estimation of the H parameter
as a function of H and N. When unbiased or when reaching the CRLB, values are bold.

by this method can only be iterative since the H
value is necessary to realize the corrections. The
convergence is very fast, 3 or 4 iterations are
enough. Finally, to improve the variance, it is
recommended to make a weighted regression [12].

III. Practical efficiency
The practical efficiency of the wavelet based
estimator is going to be tested. An estimator of the
H parameter denoted Ĥ is efficient if unbiased and
if its variance reaches the Cramer-Rao Lower
Bound (CRLB). Here, it means that two joint
hypothesis tests at a level of significance α have to
be carried out to check this efficiency:
- a first test related to the null hypothesis E( Ĥ )=H,
against the two-sided alternative hypothesis
E( Ĥ )≠H,
- a second test related to the null hypothesis
Var( Ĥ )=CRLB(H), versus the one-sided
alternative hypothesis Var( Ĥ )>CRLB(H).
NR independent realizations of size N power of 2
and of H value in ]0,1[ are first generated with the
CEM method. On each of them, Ĥ  is estimated.
The sample mean HX  and the unbiased sample
variances 2

HS  are calculated as:

∑
−

=
=

1
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H ĤNR

1X
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1S 2
H
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2
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NR
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(15)

Thus Ĥ is unbiased if [13]:

.NR
CRLB(H)z  H-X /2H α≤

(16)

az is the 100×a percentage point of the normal
distribution. The variance of Ĥ reaches the CRLB if
[13]:

.NR
)H(CRLB S 22

,NR αχ≤H
(17)

2, amχ is the 100×a percentage point of the chi-square
distribution with m degrees of freedom. If the two
above inequalities are verified, Ĥ is efficient. For
these tests, CRLB(H) values are needed. For
unbiased estimators and under some regularity
conditions, the CRLB(H) is such that:

( )( )
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
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
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L(x;H) is the likelihood function of the observed
fGn vector x depending on H. Using results in [14],
the final expression is the following [15]:
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tr is the trace operator. Table 1 shows as a function
of  H and N the square root of the CRLB(H), a
quantity which has the same dimension as the H
parameter. H values are 0.2, 0.5 and 0.8. Moreover,

H/N 128 256 512 1024 2048 4096 8192 16384 32768
0.1702 0.1859 0.1907 0.1938 0.19744 0.19753 0.19926 0.19905 0.19950.2

0.1248 0.0684 0.0437 0.0291 0.0186 0.0147 0.0090 0.0067 0.0045

0.4752 0.4847 0.4923 0.4964 0.4980 0.4989 0.4990 0.4990 0.49950.5

0.1293 0.0754 0.0468 0.0312 0.0203 0.0141 0.0103 0.0071 0.0045

0.7788 0.7894 0.7929 0.7957 0.7986 0.7971 0.7998 0.7990 0.79960.8

0.1321 0.0747 0.0488 0.0334 0.0221 0.0170 0.0100 0.0075 0.0048
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N values range from 128 to 32768 by steps of power
of 2. For large N values, asymptotical results can be
used [14]. Finally, we chose α=0.01 meaning that
the tests are performed at a level of significance of
1%. We also chose the number of realizations
NR=100.

V. Results
For the test on the mean H value, if  H-X H is lower

than NR
CRLB(H)z /2α CRLB(H)258.0 ×= , the null

hypothesis is accepted meaning that the estimator is
unbiased. For the test of the variance, if 2

HS is lower

than CRLB(H)36.1  NR
 )H(CRLB2

,NR ×=αχ , the estimator

reaches the CRLB. If both hypothesis are accepted,
the estimator is efficient with a level of significance of
α=1%. Results are presented in table 2. They indicate
that for N above 4096, this estimator is unbiased and
that its variance is very close to the CRLB.

VI. User guide for the practical
estimation of H
Before measuring the H parameter, on should care
about the fBm character of the given data. Among
the properties to define fBm, only 3 are necessary
and sufficient conditions: if a random process is
Gaussian, and has stationary and self-similar
increments, then it must be fBm [1]. 3 statistical
tests are required to estimate the validity of the fBm
model:
- a Gaussian test of the process,
- a stationary test of the process increments,
- a self-similarity test of the process increments.
The two first tests can be implemented following
[13]. For the self-similarity test, Bardet has
proposed a method in [16] that can be applied to a
single realization.
If the given data is check to be fBm, the H
parameter could be measured. The obtained results
of this study show that the wavelet estimator is
efficient above N = 4096. It can be combined to
recent ones [8]. In this last study, it was shown that
below N=512, only the classical maximum
likelihood estimator [17] should be used because it
is the only efficient one although its complexity is
O(N2). Above N=512, it was recommended to use
the Whittle ML version [18] since efficient and in
O(Nlog2N). At the light of this new study, for N
above 4096 wavelet based is to be used since
unbiased, close to the CRLB and only in O(N).
Finally, a confidence interval for the H parameter is as
follows. Since the used estimators are efficient, and
that the estimates are Gaussian distributed, the true H
is such that

CRLB(H)z Ĥ   H  CRLB(H)z Ĥ /21/21 αα −− +≤≤−
with a confidence coefficient of 1-α. za is the 100×a
percentage point of the normal distribution.
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