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ABSTRACT

Speech recognition is a special field of pattern recognition. In order
to improve the performances of the systems, one can opt for sev-
eral ways and among them the design of a feature extractor. This
paper presents a new nonlinear feature extraction method based on
the Learning Vector Quantization (LVQ) and the Neural Predictive
Coding (NPC). The key idea of this work is to design a feature ex-
tractor, the NPC, by the introduction of discriminant constraint pro-
vided by the LVQ classifier. The performances are estimated on a
phoneme classification task by several methods: GMM, MLP, LVQ.
The phonemes are extracted from the NTIMIT database. We make
comparisons with linear and nonlinear feature transformation meth-
ods (LDA, PCA, NLDA, NPCA), and also with coding methods
(LPC, MFCC, PLP).

1. INTRODUCTION

The Neural Predictive Coding (NPC) [3] approach has shown good
performances on speech feature extraction. We have developed a
discriminant criterion for predictive models: the Modelisation Er-
ror Ratio (MER) [2]. This criterion is related to the Maximization
of the Mutual Information (MMI). This principle allows the design
of a discriminant feature extractor (called the DFE-NPC) in an in-
dependent way of the classifier. Indeed, during the DFE-NPC pa-
rameterization phase there is no cooperation with the next stage: the
classification stage.

Juang [8] have proposed the Discriminative Feature Extraction
(DFE) method based on the Minimum Classification Error (MCE)
criterion. This criterion focuses on the performances of both the fea-
ture extractor and the classifier. The entire recognizer, the feature
extractor and the classifier, is trained for a same objective: obtaining
the minimum classification error. This is realized by the definition
of a loss function that reflects the classification performances of the
recognizer. Given this function, a misclassification measure is de-
fined in order to measure the distance between one specific class and
the others. Then, the Generalized Probabilistic Descent (GPD) [9]
is used to minimize the misclassification distance which is passed
through a nonlinear and derivable function like the sigmoid func-
tion. Biem [1] applied the DFE method to filter bank design and
cepstral liftering.

The key idea of the Discriminative Feature Extraction (DFE)
method proposed by Katagiri and al. [9] is that the feature extrac-
tion and the classification stage have to be simultaneously trained in
order to improve the pattern recognition.

In this paper, we focuse on Discriminative Feature Extrac-
tion (DFE) by predictive models and Learning Vector Quantization
(LVQ). First, we present the NPC model, then we show how this
model can extract nonlinear features by the help of a cooperation
with the LVQ. After, we present the experimental conditions and
the performances of the system for different phoneme groups. Fi-
nally, we give some conclusions and prospects.

2. THE NEURAL PREDICTIVE MODEL

The NPC model is a nonlinear extension of the LPC speech coding.
This model is based on neural predictor of the speech waveform.
The model differs with the model presented in [3], here the model
has two hidden layers.

The NPC is used as speech encoder but only the output layer
weights are considered as coding vector or feature vector. For that,
the learning phase is realized in two times. First, the parameteriza-
tion phase consists in the learning of all the weights by the predic-
tion error minimization:

Q =
K

∑
k=1

(yk − ŷk)
2 =

K

∑
k=1

(yk −F(yk))
2 (1)

With y speech signal, ŷ predicted speech signal, k the samples index
and K the number of samples.

In this phase, only the first layer weights w which are the NPC
encoder parameters are kept. Since the NPC encoder is set up by the
parameters defined in the previous phase, the second phase, called
the coding phase, consists in the computation of the output layer
weights a: the phoneme coding vector.

F is a nonlinear function which is decomposed into two func-
tions Gw1,2 (w1,2 first and second layers weights) and Ha (a output
layer weights):

Fw1,2,a(yk) = Ha ◦Gw1,2(yk) (2)

With ŷk = Ha(zk) and zk = Gw1,2(yk).

The NPC weights modification law ∆aPred and ∆wPred
1,2 are pro-

portional to the gradient of the prediction errors QNPC = ∑M
i Qi,

with M the number of classes.
One of the NPC objective is the discrimination between the

features extracted. For that, we developed a discriminant crite-
rion called the MER [2], but without explicit link with classification
phase. In the next section, we propose a cooperation with the LVQ
classifier.

3. COOPERATION BETWEEN NPC AND LVQ

The Learning Vector Quantization (LVQ) classifier has been suc-
cessfully applied on different domains like handwritten recognition
[10] or speech recognition [11]. The learning procedure consists in
the prototypes adjustment in order to describe optimal class bound-
aries.

The simultaneous training of NPC and LVQ models can be done
by the help of the DFE framework. Indeed, this method allows to in-
troduce discrimination provided by the LVQ classifier into the NPC
model. The DFE considers the feature extractor and the classifier
as a single module described by Φ = (a,m) (m being the LVQ
classifier prototypes).
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3.1 DFE framework

The DFE framework needs the definition of a discriminant function.
In the case of the LVQ classifier, the discriminant function of a class
is the negative of the minimum distance from the input pattern (the
feature vector) to the genuine prototype:

gi(a) = −min
τ

‖a−mi,τ‖
2 = −min

τ
d(a,mi,τ) (3)

where d(a,mi,τ) is the Euclidean distance between the input pat-
tern a (feature vector) and a prototype mi,τ of the class Ci.

According to the DFE framework, one could define the misclas-
sification measure:

µi(a) = −gi(a)+

[

1
M−1 ∑

j 6=i
g j(a)−ψ

]− 1
ψ

(4)

where ψ is a positive number. For a large ψ , the misclassification
measure becomes:

µi(a) = −gi(a)+gi(a) (5)

gi(a) is the competing discriminant function (anti-discriminant
function) to the class Ci. This leads to only consider the first in-
correct prototype [11]:

gi(a) = max
j 6=i

g j(a) (6)

The misclassification measure µi(a) (4) has to be positive when a
is misclassified and negative if this is not the case:

µr(a) = d(a,mi,τ )− d(a,m j,υ ) (7)

where mi,τ is the closest prototype of the genuine class while m j,υ
is the closest prototype of the incorrect class.

The next step consists in the definition of MCE loss function
which reflects the classification errors:

li(a) = li(µi) =
1

1+ e−ζ µi
(8)

The MCE objective function is the following empirical loss:

L(a,µ) =
N

∑
n=1

M

∑
i=1

li(an)δC(an)−i (9)

where C(an) is the class membership of the feature vector an and δ
is the Kronecker symbol which worths 1 when C(an) = i. N is the
number of frames and M the number of classes.

The Generalized Probabilistic Descent (GPD) is applied for up-
dating the parameters Φ = (a,m):

an = an −β (t)
∂ li(an)

∂an

mi,τ = mi,τ −α(t)
∂ li(an)

∂mi,τ

m j,υ = m j,υ −α(t)
∂ li(an)

∂m j,υ

(10)

where α(t) and β (t) are the learning rates of respectively the LVQ
classifier and the NPC model. The learning rates are decreasing
function of the epoch index t.

According to the MCE loss function (8), the updating rules for
the LVQ parameters are as:

mi,τ = mi,τ +2α(t)li(an)(1− li(an))(an −mi,τ )

m j,υ = m j,υ −2α(t)li(an)(1− li(an))(an −m j,υ )

(11)

And for the NPC model, the updating rule for the feature vec-
tors an is as:

∆aMCE
n = −2β (t)li(an)(1− li(an))(mi,τ −m j,υ ) (12)

One can remark that the feature vectors are updated in a fonction of
the distance between the two prototypes: the genuine and the incor-
rect. They are updated in the direction of the maximum separability
between these two classes.

These contributions have to be associated with the prediction
modifications: ∆wPred

1,2 and ∆aPred .

3.2 Cooperation

Indeed, the objective of this cooperation is to introduce discriminant
constraint on the NPC parameterization phase. Several solutions
can be used. For instance one can opt for constraint minimization
like in [4] where the simultaneous training of classifiers is processed
with a Lagrangian formalism. Here, we opt for another approach.
The two optimizations are moderated with the help of a coefficient
θ . The resultant modification for the feature vectors an is as:

∆a = θ∆aPred +(1−θ )∆aMCE (13)

The second phase of the cooperation consists in the modifica-
tion of the first layers in the maximum class separability direction.
However, the relation between the first layers weights w1,2 and the
MCE criterion (8) is not direct as for the output layer weights. Con-
sidering the objective of the NPC in the cooperation, that reverts
bringing closer the features to their adequate prototypes and to move
away them from the incorrect prototypes. In other words, the fea-
ture vector ai,n produced by the NPC model for the analysis win-
dow yi,n (belonging to the class Ci) must be close to one of the
prototypes mi,τ .

For that, we introduce a new stage into the NPC model. For the
window yi,n, we determine the two modifications necessary for:
• Bringing the feature to the prototype mi,τ : minimization of the

prediction error under the constraint: the output layer is fixed to
mi,τ . One obtains the modification of the first layers ∆wmod

1,2 .
• Move away from the prototype m j,υ : maximization of the pre-

diction error under the constraint: the output layer is fixed to
m j,υ . One obtains the modification of the first layers ∆wdisc

1,2 .

During these two processes, one estimates the modifications neces-
sary to maximize the separability of the classes.

The modification law of the first layers is a moderation of these
two effects:

∆w1,2 = θ∆wmod
1,2 +(1−θ )∆wdisc

1,2 (14)

One can notice that this modification law does not integrate the
modification of model NPC ∆wPred

1,2 . Indeed, this modification is

not useful any more because the contribution ∆wmod
1,2 makes it possi-

ble to take account of the modeling part necessary to the LVQ-NPC
process.

4. EXPERIMENTAL CONDITIONS

4.1 Database

The NTIMIT database [7] is used in the experiment of this work.
This database is composed by 10 sentences pronounced by 630
speakers of 8 areas of the United States. In using this database,
we carry out speech recognition in telephone quality. In this work,
we focused in the processing of front vowels (/ih/, /ey/, /eh/, /ae/),
voiced plosives (/b/, /d/, /g/) and unvoiced plosives (/p/, /t/, /k/) from
the first region DR1 (New England). This choice can be justified by
the fact that the classification of these phonemes is known to be dif-
ficult and are often used . We used the configuration proposed in the
NTIMIT database for the training (24 male and 14 female ) and the
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Phoneme ih ey eh ae b d g
Train 316 189 297 346 183 300 167
Test 104 54 83 79 59 90 44
Phoneme p t k
Train 215 320 390
Test 48 93 103

Table 1: Database composition for the training and test phases

test set (7 male and 4 female)). The number of phonemes for each
class is described in the table 1

Depending on their duration, each phoneme is split into a num-
ber of frames. The analysis window size is fixed to 128 samples
(8kHz for NTIMIT) with an overlapping of 64 samples.

4.2 Classification

The proposed work is an evaluation of a new feature extractor: the
LVQ-NPC. Consequently, we make comparisons with the most used
methods: the Linear Predictive Coding (LPC), the Mel Frequency
Cepstral Coding (MFCC), the Perceptual Linear Predictive (PLP)
[6] speech coding methods. The feature vector dimension is set to
12.

An efficient way for parameters evaluation is the classification.
The classification is done frame by frame without context depen-
dency. Moreover, it must be carrying out by several types of classi-
fier in order to measure the discriminant capacities of each feature
extraction method.

4.2.1 Gaussians Mixture Models GMM

This model is based on densities estimation of each class. GMMs
are trained by the help of the EM algorithm (Expectation-
Maximization) with diagonal matrices of covariance assumption.
This classifier is sensitive to initialization, the parameters are ini-
tialized by the k-means algorithm (10 iterations) with k = 16. Clas-
sification is done according to the maximum likelihood (ML) crite-
rion.

4.2.2 Prototypes classification (LVQ)

The LVQ model (Learning Vector Quantization) is a prototype-
based classifier. The training and the test are carried put by the
consideration of the Euclidean distance. This method is also sensi-
tive to initialization, we also use the k-means with k = 50.

4.2.3 Neural networks

The neural networks are based on nonlinear discriminant functions.
The model has one hidden layer of 10 neurons and the training is
done by the Levenberg-Marquardt algorithm.

4.2.4 LVQ-NPC

The number of prototypes for the LVQ-NPC model is fixed at 25.
The moderating parameter θ follows a decreasing law:

θ (t) = θ0

(

1−
t
N

)

(15)

where N is the iteration number. The value of θ0 differs according
to the treated phonetic group: 0.6 for the vowels, 0.7 for the plosives
(voiced and unvoiced).

Such evolution law shows that it is necessary by starting to
model the classes then to increase discrimination progressively.

4.3 Feature reduction

The main objective of the feature extraction step is to extract rel-
evant information directly from speech signals. Usually, the next
step in a speech recognition system, is the transformation of these
features of dimension p to a lower dimension m. The role of this

step is dimension reduction but also it can improve the classifica-
tion rates. As it is noted in [12], if the feature extractor is properly
designed, there is no need for this feature transformation.

Here, we used the feature transformation in order to measure
the efficiency of each feature extractor. The transformations used
are linear and nonlinear. The Linear Discriminant Analysis (LDA)
criterion is based on discriminant separability [5], the Principal
Component Analysis (PCA) is based on the maximization of the
variations of the original feature space. We also used the nonlinear
equivalent transforms by neural networks: NLDA and NPCA. The
classification is done by GMMs.

5. PHONEME CLASSIFICATION RESULTS

In this section, we present the results in phoneme classification. The
shown classification rates are those of the test.

Table 2 shows the classification rates for the vowels with the
various methods of coding and classification. The first remark that
one can make is that the proposed coding method, the LVQ-NPC,
allows an improvement in the classification scores. The introduc-
tion of a nonlinear modeling by neural networks and discrimination
allow an improvement of 4% compared to the MFCC coding.

LPC MFCC PLP LVQ-NPC
GMM 34.94 47.07 43.05 51.32
LVQ 35.27 42.55 39.71 50.89
MLP 40.30 45.39 42.57 50.49

Table 2: Classification rates for the vowels

Due to the fact that those plosives (/b/,/d/,g/) are voiced
phonemes, we find a similar behavior for the LVQ-NPC method
(cf. tab. 3).

LPC MFCC PLP LVQ-NPC
GMM 53.52 58.05 57 65.22
LVQ 51.01 56.26 56.23 63.67
MLP 54.58 55.19 57.07 62.73

Table 3: Classification rates for the voiced plosives

The classification of unvoiced plosives (/p/,/t/,k/) is interesting
because they are unvoiced phonemes, which initially seems to be
penalizing for predictive models like the LVQ-NPC. However, dis-
crimination makes it possible to overcome this problem and to ob-
tain better results independently of classification method (cf tab. 4).

LPC MFCC PLP LVQ-NPC
GMM 43.21 49.52 46.12 51.15
LVQ 42.93 47.16 45.83 49.76
MLP 44.49 47.67 45.52 47.16

Table 4: Classification rates for the unvoiced plosives

The feature reduction process is carried out for the voiced plo-
sives (/b/,/d/,/g/). For each coding vector, we computed the ∆ and
∆∆ parameters, the resulting vector dimension is 36. We performed
dimension reduction with LDA, PCA, NLDA and NPCA.

One can see on the figures (1,2, 3, 4) that the classification rates
are improved by feature transformations. The PCA and LDA per-
formances are similar for high dimensions but very different for
low dimensions. With the both feature transformation methods, the
LVQ-NPC performances are better on all the dimensions. These
results show that the LVQ-NPC is not affected by feature reduc-
tion. The nonlinear feature transformations allow an improvement
of classification rates for all the coding methods: there are nonlinear
informations between the feature vector and the ∆ and ∆∆ param-
eters. Moreover, one can see that for the LVQ-NPC method (cf.
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Figure 1: LPC Feature Reduction: results of LDA, PCA, NLDA,
NPCA
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Figure 2: MFCC Feature Reduction: results of LDA, PCA, NLDA,
NPCA

figure 4) the improvement is more important than in the other meth-
ods. Indeed, this method is a nonlinear feature extraction method,
and the appropriated transformation methods should be nonlinear in
order to preserve the nonlinear modelization.

6. CONCLUSIONS

We have presented a new coding method: the LVQ-NPC which is
based on the simultaneous training of an feature extractor and a clas-
sifier. The model is adapted for speech processing which seems
required nonlinear modeling but also an adequate discrimination.
The experimental results in phoneme classification resulting from
NTIMIT database shows the interest of the method. Moreover, the
performances measured by classifiers with different behaviors show
an improvement in comparison with the traditional coding meth-
ods. The features extracted are also robust for dimension reduction
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Figure 3: PLP Feature Reduction: results of LDA, PCA, NLDA,
NPCA
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Figure 4: LVQ-NPC Feature Reduction: results of LDA, PCA,
NLDA, NPCA

by linear and nonlinear methods. We show that for nonlinear fea-
ture extraction methods, the appropriated methods are also nonlin-
ear. Our next work consists of a validation on a greater number of
phonemes but also on the cooperation with other classifiers.
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