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ABSTRACT  

In this paper, we propose a new computationally efficient 
subspace-based method without eigendecomposition 
(SUMWE) for the direction-of-arrival (DOA) estimation of 
narrowband signals impinging on a uniform linear array 
(ULA) by exploiting the array geometry and its shift 
invariance property. Further an adaptive implementation of 
the SUMWE is presented for tracking the time-varying 
directions of slowly moving (relative to the sampling rate) 
signals. The effectiveness of the proposed algorithm is 
verified through numerical examples, and it is shown that 
the proposed algorithm is computationally simple and has a 
good tracking performance. 
 

1.  INTRODUCTION  
The directions-of-arrival (DOAs) estimation of signals 
impinging on an array of sensors is a fundamental problem 
in array processing, and a computationally simple direction 
estimation method with good statistical performance is 
much attractive in most practical applications. Although 
subspace-based methods have received widely attention 
because of their relatively high resolution and 
computational simplicity (e.g. [1], [2]), most of these 
methods require an eigenvalue decomposition (EVD) or 
singular value decomposition (SVD) to estimate the signal 
or noise (null) subspace. Unfortunately, the eigen- 
decomposition is computationally intensive and time- 
consuming [3], especially when the number of array sensors 
is large. Therefore, these methods are usually limited in 
many practical situations where we need to track the DOAs 
of moving signals, because they require repeated 
EVD/SVD to update the signal/noise subspace with the 
acquisition of new data and the deletion of the old data. 
For alleviating the difficulty of subspace-based methods, 
some computationally simple subspace-based direction 
estimation methods without eigendecomposition have been 
developed [4]-[7]. In linear operation based methods such 
as the BEWE [4], OPM [5], and SWEDE [6], the signal or 
noise (null) subspace is easily obtained from the array data 
relying on a partition of array response matrix, and then the 
directions are estimated in a manner similar to that of the 
MUSIC [2]. However, their accuracy is generally poorer 
than that of the conventional subspace-based methods (e.g. 
MUSIC) from the statistical viewpoint [8], [6], [5]. 
Although the WSF-E [7] achieves the asymptotic efficiency 
when either the number of snapshots or the signal-to-noise 
ratio (SNR) is large, it is computationally much more 
complicated than linear operation based algorithms. 
Furthermore, most of these computationally simple 

subspace-based methods suffer serious degradation when 
the incident signals are coherent (i.e. fully correlated) in 
some practical scenarios due to multipath propagation. 
Even the WSF-E and a variant of BEWE can resolve the 
coherent signals, their performance degrades severely at 
low SNR and with a small number of snapshots. 
Therefore in this paper, we propose a new computationally 
efficient subspace-based method without eigendecom- 
position (SUMWE) for the DOA estimation of coherent 
narrowband signals impinging on a uniform linear array 
(ULA) by exploiting the array geometry and its shift 
invariance property. The SUMWE does not require the 
computationally cumbersome eigendecomposition and the 
evaluation of all correlations of the array data, and the 
effect of additive noise is eliminated. Further the SUMWE 
has a remarkable insensitivity to the correlation between the 
incident signals, and it can be extended to the spatially 
correlated noise by choosing appropriate subarrays (i.e. 
cross-correlations of array data). Moreover, an adaptive 
implementation of the SUMWE is presented for tracking 
the directions of slowly moving (relative to the sampling 
rate) signals. The performance of the presented method is 
verified through numerical examples, and the simulation 
results show that the proposed algorithm is computationally 
simple and has a good tracking performance.  
 

2.  DATA MODEL AND BASIC ASSUMPTIONS  
Consider a ULA of M  identical and omnidirectional 
sensors with spacing d , and suppose that p  narrowband 
signals { ( )}ks n  with the centre frequency 0f  are in the 
field far from the array and impinge on the array from 
distinct directions { ( )}k nθ . Under the narrowband 
assumption, the received noisy signal ( )iy n  at the i th 
sensor can be expressed as [1], [2], [4]-[10] 
  ( ) ( ) ( )i i iy n x n w n= +  (1) 

  0( 1) ( ( ))
1

( ) ( ) k
p

j i n
i k

k
x n s n e ω τ θ−

=
∑=  (2) 

where ( )ix n  is the noiseless received signal, ( )iw n  is the 
additive noise, 0 02 fω π , ( ( )) ( )sin ( )k kn d c nτ θ θ , c  is 
the propagation speed, and { ( )}k nθ  are measured relative 
to the normal of array. The received signals can be 
reexpressed more compactly as 
  ( ) ( ) ( ) ( )n n nθ= +y A s w  (3) 
where ( )ny , ( )ns , and ( )nw  are the vectors of the 
received signals, the incident signals, and the additive noise, 

1 2( ) [ ( ( )), ( ( )), , ( ( ))]pn n nθ θ θ θA a a a  with ( ( )) [1,k nθa  
0 0( ( )) ( 1) ( ( )), , ]k kj n j M n Te eω τ θ ω τ θ− , and ( )T⋅  denotes the transpose. 
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In this paper, we make the following basic assumptions. 
● The array is calibrated and the array response matrix 

( )θA  is unambiguous. Equivalently ( )θA  has full rank.  
● Without loss of generality, the signals { ( )}ks n  are all 

coherent. Under the flat-fading multipath propagation, 
they can be expressed as [9], [10] 

   1( ) ( )k ks n s nβ=  (4) 
 for 1,2, ,k p= , where kβ  is the complex attenuation 

coefficient with 0kβ ≠  and 1 1β = .  
● The incident signal 1( )s n  is a temporally complex 

white Gaussian random process with zero-mean and the 
variance given by 

     1 ,1{ ( ) ( )} s n tE s n s t r δ∗ = ,  1 1{ ( ) ( )} 0E s n s t =  (5) 
 where { }E ⋅ , ( )∗⋅ , and ,n tδ  denote the expectation, the 

complex conjugate, and Kronecker delta. 
● The additive noise { ( )}iw n  is a temporally and spatially 

complex white Guassian random process with 
zero-mean and the following covariance matrix  

  2
,{ ( ) ( )}H

M n tE n t σ δ=w w I ,  { ( ) ( )}T
M ME n t ×=w w O  (6) 

 where mI , m q×O , and ( )H⋅  indicate the m m×  
identity matrix, the m q×  null matrix, and Hermitian 
transpose. And the noise is uncorrelated with the 
incident signals.  

● The number of incident signals p  is known or 
estimated by some proposed techniques (e.g. [10] and 
references therein), and it satisfies the inequality that 

2p M<  for an array of M  sensors.  
 

3.  SUBSPACE-BASED METHOD WITHOUT 
EIGENDECOMPOSITION — SUMWE  

3.1  Derivation of SUMWE   
In this section, we consider the estimation of constant 
directions of coherent signals, where ( )k knθ θ= . From (3), 
we have the array covariance matrix R  as 
 2{ ( ) ( )} ( ) ( )H H

s ME n n θ θ σ= +R y y A R A Ι  (7) 
where { ( ) ( )}H

s E n nR s s . By defining the correlation ikr  
between the signals ( )iy n  and ( )ky n  as { ( )ik ir E y n  

( )}ky n∗⋅ , where ik kir r∗= , we find that the diagonal elements 
{ }kkr  of R  are affected by the noise variance 2σ .  
Now by dividing the full array into L  overlapping 
subarrays with p  sensors in the forward and backward 
directions [9], [11], where 1L M p= − + , the signals in the 
l th forward subarray and the conjugate signals in the l th 
backward subarray can be expressed compactly [10], [12] 
 1

1 1( ) [ ( ), , ( )] ( ) ( )T l
fl l l p fln y n y n n n−

+ − = +y A D s w  (8) 

 1 1( ) [ ( ), , ( )]H
bl M l L ln y n y n− + − +y ( )

1 ( ) ( )M l
bln n− − ∗= +AD s w  (9) 

for 1,2, ,l L= , where 1 1( ) [ ( ), ( ), , ( )]T
fl l l l pn w n w n w n+ + −w , 

1 1( ) [ ( ), ( ), , ( )]H
bl M l M l L ln w n w n w n− + − − +w , 0 1( )diag( ,je ω τ θD  

00 2 ( )( ), , )pjje e ω τ θω τ θ , and 1A  is the submatrix of ( )θA  in (3) 
consisting of the first p  rows with the column 1( ) [1,kθa  

0 0( ) ( 1) ( ), , ]k kj j p Te eω τ θ ω τ θ− . By defining four correlation vectors 
as { ( ) ( )}fl fl ME n y n∗yϕ , 1{ ( ) ( )}fl flE n y n∗yϕ , 1{ ( )bl E y nϕ  

( )}bl n⋅y , and { ( ) ( )}bl bl ME n y nyϕ , we obtain four Hankel 
correlation matrices by some algebraic manipulations [12] 
 1 2 1[ , , , ]T

f f f fL−Φ ϕ ϕ ϕ 1
T

M srρ= ABA  (10) 

 2 3[ , , , ]T
f f f fLΦ ϕ ϕ ϕ 1 1

T
srρ= ABDA  (11) 

 1 2 1[ , , , ]T
b b b bL−Φ ϕ ϕ ϕ ( 1)

1 1
TM

srρ∗ ∗ − −= AB D A  (12) 

 2 3[ , , , ]T
b b b bLΦ ϕ ϕ ϕ ( 2)

1
TM

M srρ∗ ∗ − −= AB D A  (13) 
where A  is the ( )M p p− ×  submatrix of the matrix A  
in (3) consisting of its first 1L −  rows with the column 

0 0( ) ( 2) ( )( ) [1, , , ]k kj j L T
k e eω τ θ ω τ θθ −=a , 1 2diag( , , , )pβ β βΒ , iρ  

( )H
i θ∗bβ , 1 2[ , , , ]T

pβ β ββ , and 0 1( 1) ( )( ) [ ,j i
i e ω τ θθ −b  

00 2 ( 1) ( )( 1) ( ), , ]pj ij i Te e ω τ θω τ θ −− . 
Clearly the Hankel correlation matrices in (10)-(13) are not 
affected by the additive noise, and b M p pf

∗
−= J JΦ Φ  and 

b M p pf
∗

−= J JΦ Φ , where mJ  is an m m×  counteridentity 
matrix. Further these matrices can be just formed from the 
elements 1{ }ir  and { }iMr  in the 1st and M th columns of 
array covariance matrix R  in (7) except for the 
auto-correlations 11r  and MMr , which contain the noise 
variance 2σ . From the assumptions, we can find that the 
ranks of theses ( )M p p− ×  Hankel correlation matrices 
equal p , i.e. the dimension of their signal subspace equals 
to the number of coherent signals. 
Because it is assumed that 2M p>  (i.e. 1L p− > ), from 
the definition of the matrices 1A  and A , we can partition 
the ( )M p p− ×  matrix A  and hence the correlation 
matrices in (10)-(13) into two submatrices as 

 1

2 2
}
}

p
M p−

 
  
AA A , 1

2 2
}
}

f
f

f

p
M p−

 
  

ΦΦ Φ  (14) 

 1

2 2
}
}

f
f

f

p
M p−

 
 
 

ΦΦ Φ
1

2 2
}
}

b
b

b

p
M p−

 
  
ΦΦ Φ , 1

2 2
}
}

b
b

b

p
M p−

 
  
ΦΦ Φ  (15) 

Under the model assumptions, we can find that A  and 1A  
are of full rank and the rows of 2A  can be expressed as a 
linear combination of linearly independent rows of 1A ; i.e. 
there is a linear operator P  between 1A  and 2A  [5] 
  1 2

H =P A A . (16) 
Consequently from (10)-(15), the relation between 1A  and 

2A  can be expressed as one between the submatrices of 
fΦ , fΦ , bΦ , and bΦ  as 

 1 2
H =P Φ Φ ,   i.e.   ( 2 )

H
M p p− ×=Q A O  (17) 

 
where 1 1 1 1 1[ , , , ]f f b bΦ Φ Φ Φ Φ , 2 2 2 2 2[ , , , ]f f b bΦ Φ Φ Φ Φ , Q  

2[ , ]T T
M p−−P I , and 1

1 11 2 1 2( ) ( ) ( )H H H Hθ θ− −= =P A A ΦΦ ΦΦ . 
Obviously the columns of Q  in fact form the basis for the 
null space ( )( )H θAN  of ( )H θA . 
Therefore when the finite array data are available, the 
directions { }kθ  can be estimated without any EVD/SVD 
by minimizing the following cost function 
  ˆ( ) ( ) ( )H

Qf θ θ θ= a aΠ  (18) 
where 0 0( ) ( 2) ( )( ) [1, , , ]j j L Te eω τ θ ω τ θθ −a , 1ˆ ˆ ˆ ˆ ˆ( )H H

Q
−=Q Q Q QΠ , 

and 1
1 11 2

ˆ ˆ ˆ ˆˆ ( )H H−=P ΦΦ ΦΦ .  
Remark 1:  Although the incident signals are assumed to 
be fully coherent, the proposed SUMWE algorithm can be 
extended to the case of partly coherent or incoherent signals. 
Further the SUMWE can accommodate a more general 
noise model of the spatially correlated noise if we choose 
the signal vectors ( )fl ny  and ( )bl ny  used to form the 
matrices fΦ , fΦ , bΦ , and bΦ  appropriately [12]. □ 
 
3.2  Batch-Implementation of SUMWE  
The implementation of the SUMWE for estimating the 
constant directions of incident signals with the finite array 
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data 1{ ( )}N
nn =y  is summarized as follows: 

a): Calculate the correlation vector ϕ̂  between ( )ny  
and ( )My n∗  and that ϕ̂  between ( )ny  and 1 ( )y n∗  as 

  
1

ˆ ( ) ( )
N

M
n

n y n N∗

=
∑= yϕ ,   1

1
ˆ ( ) ( )

N

n
n y n N∗

=
∑= yϕ  (19) 

 where 1 2ˆ ˆ ˆˆ [ , , , ]T
M M MMr r r=ϕ , and 11 21 1ˆ ˆ ˆ ˆ[ , , , ]T

Mr r r=ϕ . 
b): Form the estimated correlation matrices ˆ fΦ , ˆ

fΦ , ˆbΦ , 
and ˆ

bΦ  from ϕ̂  and ϕ̂  by using (10)-(13).  
c): Estimate the linear operator P  as 
   1

1 11 2
ˆ ˆ ˆ ˆˆ ( )H H−=P ΦΦ ΦΦ  (20) 

 and calculate the orthogonal projector Q̂Π  as 
  1ˆ 2ˆ ˆˆ ˆ ˆ ˆ( ( ) )H H H

M p pQ
−

−= − +Q I P PP I P QΠ  (21) 
d): Estimate the directions { }kθ  by searching the p  

highest peaks of the spatial spectrum ( )P θ  or by 
finding the phases of the p  zeros of the polynomial 

( )p z  closest to the unit circle in the z -plane, where 
ˆ1 )) (( ( )H

QP θ θθ a aΠ , ˆ2( ) ( ) ( )L H
Qp z z z z− p pΠ , ( )zp  

2[1, , , ]L Tz z − , and 0 ( )jz e ω τ θ .  
Remark 2:  The number of MATLAB flops required by the 
SUMWE algorithm is nearly 216 16 ( )NM M M p+ − , when 
N M p  [12]. Further the statistical analysis of the 
SUMWE is studied, and the asymptotic mean-squared-error 
(MSE) expression is given explicitly in [12]. □ 
 
4.  ADAPTIVE ALGORITHM FOR DIRECTION 

TRACKING  
4.1  Updating of Null Space and Direction  
Now we consider the real-time implementation of the 
SUMWE for tracking the slowly time-varying (relative to 
the sampling rate [6]) directions of moving signals.  
First the estimation of linear operator ( )nP  at the time n  
can be reduced to the minimization of the instantaneous 
cost function ( )J n  given by  
  2( ) ( )J n nE  (22) 
where ( )nE  is the estimation error given by ( )nE  

2 1( ) ( ) ( 1)n n nΗ Η− −PΦ Φ , 1( )nΦ  and 2( )nΦ  are the instant- 
taneous correlation matrices, and 2|| ||⋅  denotes the square 
of the Frobenius norm. Thus we easily have the normalized 
least-mean-square (NLMS) algorithm for updating the 
linear operator ( )nP  [13] 

 1

1 1

( )( ) ( 1)
tr{ )

)
( ) ( }

(nn n
n n

n
Η

µ
= − +

EP P Φ
Φ Φ

 (23) 

where µ  is the step-size ( 0 2µ< < ). By performing the 
QR decomposition with the Householder transformation on 
the matrix ( ) ( )H

pn n +P P I  as 
  ( ) ( )H

pn n =+P P I P QR  (24) 
where Q  is a p p×  unitary matrix, and R  is a p p×  
upper-triangular matrix, then the instantaneous orthogonal 
projector ( )nΠ  can be obtained  
 1

2( ) ( )( ( ) ( )) ( )H HH
M pn n n n n−
−= −Q P Q QRI PΠ  (25) 

where 2( ) [ ( ), ]T T
M pn n −= −Q P I . Note that the inversion 1−R  

is easily got by a simple back-substitution, because the 
matrix R  is upper- triangular matrix.  
Next as the estimate k̂θ  is obtained by minimizing ( )f θ  
in (18), based on the second-order Taylor series expansion 

of ( )f θ , we can get the approximate Newton’s iteration 
method for direction estimation as [13], [12], [6] 

 
ˆ ( 1)

Re{ ( ) ( ) ( )}ˆ ˆ( ) ( 1)
( ) ( ) ( )

k

H

k k H
n

nn n
n θ θ

θ θθ θ
θ θ

= −

= − − a d
d d

Π
Π

 (26) 

 
4.2  On-line Algorithm for Direction Tracking  
Based on the above analysis, the real-time algorithm for 
tracking the time-varying directions is given as follows:  
1): Calculate the instantaneous correlation vector ( )nϕ  

between ( )ny  and ( )My n∗  and that ( )nϕ  between 
( )ny  and 1 ( )y n∗  as 

   ( ) ( ) ( )Mn n y n∗= yϕ ,  1( ) ( ) ( )n n y n∗= yϕ  (27) 
 where 1 2( ) [ ( ), ( ), , ( )]ˆ ˆ ˆ T

M M MMn r n r n r n=ϕ , and ( )n =ϕ  
11 21 1[ ( ), ( ), , ( )]ˆ ˆ ˆ T

Mr n r n r n . 
2): Form the instantaneous estimates of Hankel correlation 

matrices ( )f nΦ , ( )f nΦ , ( )b nΦ , and ( )b nΦ  from 
( )nϕ  and ( )nϕ  by using (10)-(13). 

3): Update the linear operator ( )nP  by using (23). 
4): Calculate an auxiliary matrix as ( ) ( )H

pn n= +PP P I , 
and perform the QR factorization of P  based on 
Householder transformation as (24). 

5): Form the projector as 2( ) [ ( ), ]T T
M pn n −= −P IQ , and 

calculate the orthogonal projector ( )nΠ as (25).  
6): Update the estimates of directions ˆ{ ( )}k nθ  by using 

the approximate Newton’s iteration method as (26). 
In addition, the NLMS algorithm is initialized by 

( 2 )(0) p M p× −=P O , and the first the first 0 2K M=  snapshots 
of the received data are accumulated for an off-line 
SUMWE to provide the initial values of directions ˆ{ ( )}k nθ  
for the Newton’s iteration method.  
 

5.  NUMERICAL EXAMPLES  
The ULA with M  sensors is separated by a half- 
wavelength, and two signals with equal power come from 
angles 1θ  and 2θ . The SNR is defined as the ratio of the 
power of the signals to that of the additive noise at each 
sensor. The results are based on 1000 independent trials.  
Example 1: Performance of SUMWE versus SNR 
The directions of two coherent signals are o

1 5θ =  and 
o

2 12θ = , and their SNR is varied from 10−  to 25 dB. The 
number of sensors is 10M = , and the number of snapshots 
is 128N = . Additionally the subarray size is set as 7m =  
for the spatial smoothing (SS) based algorithms. The 
empirical root-MSEs (RMSEs) of 1̂θ  and 2̂θ  are shown 
in Fig. 1, where the theoretical RMSEs of the SUMWE [12] 
and the stochastic Cramér-Rao lower bounds (CRBs) [14] 
are also plotted. Because the maximum possible number of 
subarrays and working array aperture are exploited and the 
effect of additive noise is eliminated by appropriately 
choosing the used subarrays, the SUMWE method 
generally outperforms the SS-based root-MUSIC [2], [9] 
and the methods without EVD such as the BEWE (variant 
for coherent case) [4] and forward-backward SS (FBSS) 
based SWEDE (variant G) [6], [9], and it is superior to the 
FBSS-based OPM [6], [9] at low SNRs. And it performs 
well than the WSF-E [7] at low to moderate SNRs. In 
addition, the empirical RMSEs of the SUMWE are very 
close to the theoretical ones and the difference between the 
theoretical RMSEs and the CRBs is small.  
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Fig. 1  RMSEs of the estimates versus the SNR (dotted 
line: SS-based root-MUSIC; dotted line with “+”: 
FBSS-based root-MUSIC; “ ∆ ”: FBSS-based OPM; “x”: 
BEWE; solid line: FBSS-based SWEDE; dashed line: 
WSF-E; solid line with “o”: SUMWE; dash-dot line: 
theoretical RMSE of SUMWE; and dash-dots line: CRB). 
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Fig. 2  Averaged estimates of time-varying directions 
coherent signals (dotted line: actual value, and solid line: 
proposed algorithm). 
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Fig. 3 Averaged estimation errors of estimated directions. 

 
Example 2:  Tracking of Time-Varying Directions 
Here two coherent signals with equal power come from 

o o
1( ) 30 0.01 ( 1)n nθ = + −  and o o 4

2( ) 10 5 sin(2 (4 10n nθ π −= + ×  
6 22.25 10 ))n−+ × , where 1,2, ,1000n = , and the SNR is 

20 dB. The number of sensors is 16M = , and the step-size 
of NLMS algorithm is set as 1µ = . The proposed on-line 
algorithm is carried out, and the averaged estimates and 
estimation errors are shown in Figs. 2 and 3. Even though 

the SS and EVD/SVD processes are not used, the proposed 
algorithm can promptly track the variation in the desired 
directions of coherent signals with less estimation errors. 
 

6.  CONCLUSION  
A new computationally efficient subspace-based method 
called SUMWE was proposed for direction estimation of 
narrowband signals impinging on a ULA by exploiting the 
array geometry and its shift invariance property, and its 
adaptive implementation was presented for tracking the 
directions of moving signals. The effectiveness of the 
proposed SUMWE and its adaptive implementation were 
verified through numerical examples. It was shown that the 
proposed adaptive algorithm has the advantages of the 
computational simplicity and good tracking adaptation in a 
slowly time-varying environment. 
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