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ABSTRACT

A new blind symbol by symbol equalizer is proposed.
The operation of the proposed equalizer is based on the ge-
ometric properties of the two dimensional data constellation.
An unsupervised clustering technique is used to locate the
clusters formed by the received data. The symmetric prop-
erties of the clusters labels are subsequently investigated in
order to label the clusters. Following this step, the received
data are compared to clusters and decisions are made on a
symbol by symbol basis by assigning to each data the label of
the nearest cluster. The performance of the proposed equal-
izer is better compared to the performance of a CMA-based
blind equalizer.

1. INTRODUCTION

Intersymbol Interference (ISI) is a major impairment in to-
day’s high bit rate communication systems [9]. Channel
equalizers used in the receiver part aim to suppress the effect
of ISI. In most of the cases the communication channel is
unknown and the design of the equalizer is performed on the
basis of a known training sequence of information bits. How-
ever, there are many cases that the transmission of a training
sequence is not possible or desirable. This mode of equalizer
design is known as blind.

Blind channel equalization is a challenging task and has
been the focus of intense research effort. Recently, an interest
has risen on approaches based on data clustering techniques
(3], [6], [10].

In this paper a novel blind cluster based symbol by sym-
bol equalizer is proposed. The equalizer extracts the infor-
mation needed to perform data detection from the clusters
formed by the received data. The whole process involves a
simple symbol by symbol decision procedure.

The cluster based blind channel estimation algorithm
consists of two steps: a) data clusters are first estimated via
an unsupervised learning technique and b) labeling of the es-
timated clusters is performed by unravelling the information
hidden in the geometry of the clusters constellation in the two
dimensional space. That is, for data generated by bipolar al-
phabets (assumed in this paper) the clusters are arranged in
pairs of clusters with the right sided cluster labeled as +1
and the left sided cluster labeled as —1. This property is
called property of symmetric labels and it is used in order
to label the clusters. Determination of the appropriate pairs
of clusters is obtained by using the results of [2] concern-
ing the properties of the convex hull of the two dimensional
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clusters constellation. The edjes of the convex hull are used
to recover the channel taps. However, in contrast to [2], in
this paper we need only absolute values of the channel taps
and there is no need to find the specific permutation of the
channel taps.

When channel estimation is completed the received data
are compared to clusters and a closest neighbor rule [12] is
utilized to achieve data detection on a symbol by symbol ba-
sis. That is, the currently observed data is classified by as-
signing to it the label associated with the nearest cluster.

The paper is organized as follows. Section 2 presents the
system description and the properties of the 2-dimensional
clusters constellation. Section 3 describes the proposed sym-
bol by symbol blind equalizer. In Section 4 simulation results
are given and finally, in Section 5 conclusions are drawn.

2. CLUSTERS CONSTELLATION PROPERTIES

The received signal g(¢) of an ISI and noise impaired linear
system is written as:

L

g(t)= 3 hDI(t—i) +w(0),

i=0

(1

where I(¢) is an equiprobable sequence of transmitted data
taken from a binary alphabet, i.e., I(¢) € {x;,k= 1,2}, h(7) is
the channel impulse response and w(¢) is an Additive White
Gaussian Noise (AWGN) sequence. Eq. (1) can also be writ-
ten as:

g(1) = (1) +w(), )

where c(¢) is the noisless channel output sequence which is
a discrete values signal with 2+ different elements.

In this paper, the neccessary information for data detec-
tion is extracted from the geometric structure created by the
received data in the two dimensional space.

Consider the 2 x 1 vector of successively received sam-
ples:

[g() gt —1)]". ()

In the absence of noise, g(t) is associated with Q = 2/+2
points in the 2-dimensional space. Each point corresponds
to one of the 2X+2 possible realizations of the sequence of
transmitted bits: (/(¢),...,I(t — L — 1)). If the received data
is corrupted by AWGN, then the randomness of noise leads
to the formation of a cluster around each point. Each clus-
ter is represented by a suitably chosen representative, which

g(t)



corresponds to the noiseless channel response vector in the
2-dimensional space, i.e.,
e(t) = [e(t) e(t = 1)), )

with ;

C(f) € {ck = [ckl CkZ] 7k: 177Q}
Each cluster representative, ¢j, corresponds to a specific se-
quence of transmitted data denoted as: ([0, N +1))
and the two components of ¢, ¢ and ¢y, are written as:

L+1

L
e = /kalh(l), = /Z Lah(l—1). )
=0 =1

Each cluster is characterized by a label, X}, which is defined
as the value of the corresponding emitted data, i.e.,

Xe=la=1(t—d),

with d an appropriate choosen delay and X € {x;,i = 1,2}.
For a linear channel, the edjes E;, i = 1,..,2L + 4, of the
convex hull, H, of the two dimensional data constellation
contain information related to the channel taps [2]. That is,
every edje E; of H is parallel to some vector u;, where:

uo = [7(0) 0] Juy = [A(1) R(0)]7,....,uz41 = [0 A(L)]T

and E; has length 2|u;|. Actually, there are two edjes parallel
to each vector u;.

Moreover, for the edjes of the convex hull the following
Theorem is shown.

Theorem 1 For each unique edje, E;, (i=1,...,.L+2) of the
convex hull there are Q[2 pairs of clusters such that each
cluster of a pair defines the endpoint of a line parallel to the
edje E;. The length of each line is equal to the length of E ;.

Proof: Consider two clusters: ¢; = [c;1 cx]’ and
¢, =[cj1 ¢ jz]T with corresponding transmitted sequences
(IkO----[k(L+1)) and (I_fO---Ij(L+1)) with

]kl:{ 1#i

=i
where/ =0,...,L+ 1and i € {0,...,L+ 1}. Then, according
to Eq. (5):

|Ck1 —Cj1| = 2|h(i)| and |Ck2_cj2| :2|h(i— 1)|

L
—1j

Consequently, for each specific i, i € {0,...,L + 1}, there are
/2 such pair of clusters, in the two dimensional constella-
tion being separated by distance equal to 2|u;|. The corre-
sponding transmitted sequences of the two clusters of each
pair are the same except the value of data /;; and [j; (i.e.,

I(t —1i)).

Definition.: By now, we will call pair of clusters two clusters,
¢ and ¢, sharing the same data except the value of /;; and [j;
respectivelly, and being separated by distance equal to 2|u;].

For the values of /;; and ;; the following Theorem holds.

Theorem 2 (Property of labels symmetry): The values of the
labels of Ii; and 1;; are ordered in ascending (or desceding)
order, that is, for all the pairs parallel to E;, the right sided
cluster has I(t —i) = +1 and the left sided I(t —i) = —1 (or
the opposit).
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Proof: The clusters ¢; and ¢; form a pair of clusters and

Crl = Ikih(i) + ;Iklh(l), cj1 = [j,’h(i) + ;[jlh(l)
[#£i [#£i

Since, 3 ;i luh(l) = 314 1h(]) then:

if cr1 < ¢ji, then Iy <Ij;.

That is, the right sided cluster has label +1 and the left
cluster has label -1. This is true with the assumption that
h(i) > 0, if ~(7) < 0 then the opposite order takes place, i.e.,
ifcp < Cj1 then I; > 1.

Example: Figure 1 represents the clusters formed in the
two dimensional space by bipolar transmitted data when the
channel impulse responce is H(z) = 0.3 + 0.8z~ 4+0.3z72.
In the figure appear also the convex hull and the values of
the transmitted data: 7(¢)I(t — 1)I(t —2)I(t — 3). It can be
easily seen that the lengths of the convex hull edjes are: [0.6
0], [1.6 0.6], [0.6 1.6] [0 0.6] (each length corresponds to
two edjes). In the figure are also plotted the lines which are
parallel to E; = [1.6 0.6]. All the respective pairs of clusters
(endpoints of the parrallel lines) are labelled by the value of
I(t —1). From the figure is seen that all the right sided clus-
ters have label I(f — 1) = 1 and the left sided clusters have
label I(r — 1) = —1.

From the figure is also seen that the clusters constellation
is characterized by pairs of clusters with distance between
them equal to [0.6 0]. The labels of these pair are: I(¢) =
+1, for every right sided cluster and I(¢) = —1, for every left
sided cluster. In the same way, we can observe that there
are 8 pairs with distance between them: [0.6 1.6] and labels
I(t—2) =+1 (right clusters) and 7(t —2) = —1 (left clusters).
Finally, the pairs with distance [0 0.6] have labels /(¢ — 3)
+1 (right clusters) and /(¢ — 3) 1 (left clusters).

3. SYMBOL BY SYMBOL BLIND CLUSTERING
EQUALIZER

Two major steps compose the operation of the proposed blind
equalizer. First, clusters estimation takes place and then fol-
lows the signal detection procedure. The block diagram of
the proposed equalizer appears in Figure 2.

A cluster-based blind channel estimation algorithm con-
sists of two steps [10]:

a) clusters representatives are first estimated via an unsu-
pervised learning technique and

b) labeling of the estimated clusters is achieved.

In the proposed equalizer the two dimensional clusters
representatives are identified by means of the Neural Gaz al-
gorithm [8].

The proposed labeling algorithm aims to the character-
ization of each specific cluster according to the respective
value of the transmitted data /(¢ — d), where d is an unknown
delay. It is known that a nonzero lag, d, generally permits a
better equalization performance [1]. In this algorithm, it is
chosen the delay which corresponds to the maximum tap of
the channel impulse response, since, that way, we impose the
biggest separation among the two classes (+1, -1). For many
channels this leads to two separable decision regions. This is
important for a symbol by symbol equalizer as it makes its
decisions much more robust to the errors.



According to Section 2, the clusters labels in the 2-
dimensional space have a symmetric distribution. Thus, ac-
cording to their position on the constellation we can label the
clusters.

The proposed algorithm is the following. First, we found
the convex hull and consequently the channel taps (absolute
values). Note also, that there is no need to discover the ex-
act permutation of the channels taps (which is needed in [2]).
Then, the maximum channel tap, |4(d)|, is chosen. Follow-
ing this step, we seek for the Q/2 clusters pairs that are sepa-
rated by the maximum distance in the horizontal (first) com-
ponent. Obviously, the clusters of all these pairs are sepa-
rated by distance [2|h(d)| 2|h(d — 1)|]. Note, that if d =0
then the pair’s distance is [2]4(0)| 0]. Then, the cluster of
each pair, lying to the left is labeled as -1 and the cluster of
each pair lying to the right is labelled as +1. Note that, the
ambuigity in the descending or ascending order of the labels
is solved by using differential encoding [11].

Since labeling is completed a simple decision rule is
adopted. For the received data vector g(¢) is found its dis-
tance from each cluster, i.e.,

r,~:|g(t)—c,~)|, izl,...,Q. (6)

The label of the closest cluster determines the decision for
the currently observed data g(z).

Actually, there is no need to perform all the comparisons
described in Eq. (6). Only a small number of comparisons
need to be performed since data are first compared with the
midle cluster (clusters are assumed ordered in the output of
the unsupervised clustering algorithm). Next comparison is
limited to the half of clusters and the incoming data is com-
pared with the midle cluster of this section and so on. This
procedure gives rise to a very small amount of total com-
parisons. Consequently, the computational complexity of the
decision step is very small.

The algorithm for linear channels appears in Table 1.

4. SIMULATION RESULTS

In this experiment data are assumed bipolar and a non mini-
mum phase channel is used with transfer function:

H(z) =0.3+0.8271 +0.3272.
The Signal to Noise Ratio (SNR) is defined as
SNR = 10l0g(Sq/Sw)

where, S, and S,, are the signal power and noise power re-
spectivelly.

The labeling of the clusters is performed by assuming the
clusters pairs having the maximum (horizontal) distance be-
tween them (which is [1.6 0.6] according to Figure 1). That
is, the labeling is based on the value of the tranmitted data
I(t—1).

In this experiment the performance of the proposed
equalizer is compared to the performance of a blind equal-
izer based on the Godard algorithm (Constant Modulus Al-
gorithm, CMA) [5]. The performance of the two equalizers
appears in Figure 3. Clearly, the performance of the proposed
blind symbol by symbol equalizer outperforms the perfor-
mance of the CMA equalizer.
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The above results have been verified on a variety of chan-
nels and proove the effectiveness of the algorithm. The ap-
plication of the equalizer to M-ary data and complex data and
to non linear channels is the subject of future work.

5. CONCLUSIONS

A new blind cluster based symbol by symbol equalizer is pro-
posed. The equalizer consists of 3 steps: a) clusters identifi-
cation through an unsupervised learning algorithm, b) label-
ing by unravelling the symmetric properties of labels in the
2-dimensional clusters constellation and ¢) symbol by sym-
bol data detection.

The performance of the equalizer is superior to the per-
formance of a CMA-based blind equalizer for linear chan-
nels.

It is also of great interest the fact that the computational
complexity of the decision step of the proposed equalizer is
very small. This feature can be very usefull in cases of static
channels, where in steady state we can have a robust equal-
izer with very small complexity.
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Symbol by Symbol Blind Equalizer
for Linear Channels

A. Estimation of the two dimensional clusters

Al. Estimation of the clusters representatives,
¢ k=1,...,0

Unsupervised learning

A2. Labeling of clusters

a) Find the convex hull, H,
and determine |4(i)|,i=0,...,L

b) Choose the max tap |4(d)|

¢) Find the couples of clusters with
maximum horizontal distance

i.e., pairs having distance between them:
2lh(d)] 2lh(d = 1)]]

(for d = 0 the distance is [2]/(0)] 0])

d) Label the (pair of) clusters:
left cluster -1, right cluster +1

B. Data detection

Nearest neighbour rule.

izer

Table 1: Symbol by symbol clustering based blind equal-
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