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ABSTRACT

The Blind Separation problem of linear time dependent mix-
tures is addressed in this paper. We have developed a novel
algorithm based on the minimization of the mutual informa-
tion plus a penalized term which ensures an a priori nor-
malization of the estimated sources (outputs). The criterion
minimization is done using a well known gradient approach.
Finally, some numerical results are presented to illustrate
the performance of the penalized algorithm comparing to the
Babaie-Zadeh approach presented in [4].

1. INTRODUCTION

In the last years, blind source separation (BSS) became a
classical problem in signal processing due to the wide range
of engineering applications that could benefit from such tech-
niques. A general class of blind signal separation problem is
the linear blind source separation where the mixing system
is a linear time dependent (or not) function. Such a model
is named convolutive mixture and the separation in regards
with, convolutive BSS. The principle of BSS is to transform
a multivariate random signal into an ideal signal which have
mutual independent components in the statistical sense (see
[1, 2]). So, BSS is achieved by maximizing the distance be-
tween the pdf of the ideal signal and the pdf of the multi-
variate observed signal. Note that in practice, the pdfs are
unknown and must be estimated. It has been shown in [3]
that this distance can be easily related to the maximization of
a contrast function like the mutual information between the
ideal signal and the observations.

This above mentioned approach (mutual information) is
used by Babaie-Zadeh ef al in [4]. The authors have pro-
posed a new method to separate convolutive mixture based
on the minimization of a delayed output mutual information
where each mutual information term is minimized using the
Marginal and the Joint score function. We propose here an
extension of this method using a penalized mutual informa-
tion criterion which carries out blind source separation re-
gardless of the permutation problem and the scale indeter-
minacy. Moreover, this criterion allows us to use a direct
gradient method without any constraint on the displacements
and so an efficient optimization.

The paper is organized as followed. Section 2 recalls the
principle of BSS, and presents the model. Section 3 intro-
duces the mutual information and the penalized separation
criterion. The algorithm is presented in Section 4. Finally, a
discrete form of the criterion, then a stochastic form are pre-
sented with some numerical results illustrating this work in
section 5.

This work was supported by The Champagne-Ardenne region.

2. PRINCIPLE OF CONVOLUTIVE BSS

The mixing model can be introduced as follows (in the noise
free case):

x(t) = of x5(¢), (1)

where * denotes the convolutive product, .27 is the mixing op-
erator, x(¢) the observation vector, and s(¢) the independent
component source vector.

Then, the separating system is defined by :

W(1) = Bxx(t), )

where the vector y(¢) is the output signal vector (estimated
source vector) and 4 the separating operator and can be im-
plemented as in figure |
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Figure 1: Mixing and separating systems.
In the discrete form, (3) and (4) become:

x(n) =1 (2)]s(n) =y s(n—k), 3)
k

and
y(n) =[2(2)]x(n) = % PByx(n— k), 4)

where @7, and %, are respectively the corresponding .o/ and
A z-transform matrix.
If we assume o7 is left-invertible and statistically indepen-
dent sources, then the problem consists in finding % and y
for a given x such that:

V(n) = [B(2)] #x(n) = [BE)][ (2)s(n), ®)

where 4 satisfy [#(z)][/ (2)] = [P A (2)], and 2 is a per-
mutation operator (and/or) 7 a filtering operator.

3. INDEPENDENCE CRITERION

Let y = (y1,...,yn)" a random vector and consider Py, the
joint probability density function (joint pdf) and p),,i €
{1,...,N}, the marginal probability density function of the
i component of y (marginal pdf).
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In the BSS context, the mutual information can be written
as follow:

_ py(t)
I(y)—/Rpr(t)ln (M) dz, (6)

1

It is well known that (6) is nonnegative and equal to zero if
and only if the components are statistically independent.

With convolutive mixtures, it is easy to show that the
independence between two scalar sources yi(n) and y(n)
(for all n) are not sufficient to separate the system. That’s
why additional constraints must be stated to ensure the mu-
tual independence of the output signal components y;(n),
i€ {l,...,N}. To make it easier to understand, let us consider
now a bidimensional random vector y(n) = (y1(n),y2(n))T.
The independence of the components y;(n) and y,(n') is
needed for all  and n’ to ensure the separation, in a different
way the independence of y;(n) and y,(n — m), for all n and
at all lags m.

Babaie-Zadeh et al take this last remark into consider-
ation and propose in [4] the minimization of the following
separation criterion:

J=3 1(/(n)) @
q

with y4(n) = (y1(n—q1),y2(n — q2),....,yn(n—qn))T when
y(n)= (y1(n),y2(n),...,yn(n))T is the random output vector,
and ¢ = (q1,92,...,qv)" an integer vector (with ¢; = 0). Ac-
tually, the separation is obtained when the components of y¢
become independent. In order to prevent the convergence to
the trivial solution and to overcome the scale indeterminacy,
for each k& < N, the k" output component is subject to a nor-
malization constraint. From a mathematical viewpoint, and
in terms of separating matrix % can be written :

2
B = (Bo, s By) € My (psnyy ~RETV (8)

which means that each row of % belongs to the variety
V ={L € RWP+DN; energy of L = 1} of the euclidian space
R(P+DN Qo the Babaie-Zadeh et al method is based on a
tangential gradient i.e. at each iteration, the matrix is scaled,
and the displacement is done in the opposite direction of tan-
gential gradient such that the rows of % remain on the variety
V. The main drawback of this method is that the convergence
of the algorithm could be affected by the normalization pro-
cess.

In this paper we propose another approach which consists in
overcoming the normalization constraint by adding a penal-
ization term to the criterion. This allows us to use a direct
gradient method without any constraint on the displacements
toward the optimum and so a more efficient optimization.
The numerical results presented at the end of this paper con-
firms this fact.

Moreover, one of the difficulties in the criterion (7) min-
imization is that the mutual information depends on the den-
sities of the random variables, which must be estimated from
the data. To minimize the criterion (7), several methods are
proposed to estimate the pdf of the random variable. The ap-
proach in [5] consists in writing an expansion like Edgeworth
or Gram-Charlier series of the pdf. Another approach is to
calculate the (stochastic) gradient with respect to the sepa-
rating matrix (see [6] and recently [4]). This approach points

out the relevance of the score function (the log-derivative of
the density defined below) of a random variable.

In this paper, we propose the following penalized crite-
rion:

J=3,107(n)+ )
A3y Sy (ELK] () = ED{ (m)]) ] = 1),

where E|[.] is the mathematical expectation and A a positive
parameter (the penalization parameter).

It is trivial to show that the criterion (9) reaches its minimum
with normalized independent component outputs, since we
choose A > 0. The first term in the criterion is to minimize
the criterion (7) of the estimated sources, while the second
term demands that the output signal in each source have unit
energy on average. In a sense, this constraint adds a signal
normalization feature to the algorithm. In others words, this
criterion overcomes the scale indeterminacy and prevents the
algorithm from converging to the trivial solution (y = 0).

)

4. A PENALIZED ALGORITHM

In this section, we apply the gradient approach to separate
convolutive mixtures based on the minimization of the crite-
rion (9). To separate the sources by means of FIR filters with
maximum degree p, the de-mixing system will be:

p
W) =5 Bix(n—k), (10)
k=0

where the infinite summation in (4) is replaced by a finite
one.

To estimate the matrices %, leading to estimate sources
outputs, we calculate the gradients of J with respect to each
PBy. So, we define the Joint Score Function (JSF), the
Marginal Score Function (MSF) and the Score Function Dif-
ference (SFD) respectively by:

p,0) apy0)

dy dy
¢y()/) = (_ p;zy) )7"'7_ p‘;(])v/)(y) 7)

o 1 Py ON
GO = (=5 " pyom ) 2
B, = ¥,0)-¢,0).

4.1 The gradient

Let %), a matrix, & a “small” matrix, to calculate the gradient
with respect to % of J. We set By = B+ & amatrix in a
neighborhood of %;.

From (10), we have by definition:

¥(n) = [B(2)|x(n) = y(n) + Ex(n — k),
Setting A(n) = &x(n — k), we have:

Y(n) =y (n) + 1 (n).
Then we can state the following proposition :

Proposition 1 Let us consider J defined by (9), then:
T ()~ J0(n)) = (&, { B (mpx(n—0)" )
AMEE {w(n)x(n — k)T}> +o(&),

where w= (wy,...,wy) with w; = 4(E[y7?] — 1)y;, o(&) denotes
higher order terms in & and (C,D) = trace(CD") is the ma-
trix inner product.
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Proof —See the appendix. o
Formally, we get

%;({n)) =E {B;ﬂ(n)x(n — k)T + Aw(n)x(n— k)T},

4.2 Algorithm

(From the proposition (1), we derive the following algo-
rithm:

e Stepl:fork=0,...,pand givenﬁg

. an—1 oJ
BZ:BZ —H—
B

e Step 2: update y”* such that:
n ~n L ~n
V' =B @) = S Bix(n—k),
k=0

e Step 3: repeat until convergence.

5. NUMERICAL RESULTS

In this section, we deal with two observations obtained by a
convolutive mixture of two sources. We give a comparison
between the criterion (7) (as it is presented in [4]) and our
criterion (9). We will use the separation criterion (9) in its
discrete form, i.e the finite summation over ¢; € {—M, ..., M}
takes the place of the infinite one over g; € Z, where M =2p
(p is the maximum degree of the separating filters). Since this
criterion is computationally expensive, we use its stochastic
version. In other words, at each iteration, m is randomly cho-
sen from the set {—M,...,M}.

As performance criterion, we have used the output Signal to
Noise Ratio (SNR) defined by:

2
SNR; = 10log;, <E Epi] ) (11)

(il si=03)?]]
where yil(s,—01 = {([Z(2)][# (2)]s(n)),};,—o-

5.1 Example 1.

The mixing system is chosen as follows:

0.54+0.3z714+0.1z72
1402z7140.1272

1402z7140.1z72
T 1 05403z140.1272

The maximum degree of the FIR is equal to 2 (p =2, M =4).
The number of observations is taken equal to 500, and the
SFD are estimated using the Pham’s method described in [7].
The experiment is repeated 50 times with different realiza-
tions of the random sources, the average standard deviation
is ensured by the penalized algorithm (1.0009 for the first
estimated source and 1.0005 for the second). The figure 2
shows the averaged SNRs versus iterations for the two al-
gorithms, the adapting step-size is equal to 4 = 0.3 for the
Babaie-Zadeh algorithm and to y = 0.08 for our algorithm
(with a penalization parameter taken to A = 1).

35

301

251

20

dB

I I I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
iterations

30

251

201

dB
@
I

I I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
iterations

Figure 2: Averaged output SNRs versus iterations with
Pham’s estimation of the SFD : our penalized algorithm (at
the top), Baibaie-Zadeh algorithm (at the bottom) for the
mixing of two random signals (without permutations be-
tween the components).

5.2 Example 2.

Here, the mixing system is:

_ 1 i (z)
A7) = o (2) 1 ;
where
3(z) = 0.01z71 —0.09272 +0.05273
—0.1827%40.59z7° 4+ 0.46z ¢
ah1(z) = 0.1z71 —0.1527240.55273

+0.42z74 —0.12z75 4 0.04z°

The score functions are estimated using the Pham’s method,
the maximum degree of the FIR is taken equal to 6 (p = 6,
M = 12). The adapting step-sizes and the penalized param-
eter are taken as in the previous test. The average standard
deviation is well kept (1.0000 for the first estimated source
and 1.0002 for the second).

Figure 3 shows the averaged SNRs (taken also over 50
repetitions of the experiment) versus iterations for both algo-
rithms.
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Figure 3: Averaged output SNRs versus iterations with
Pham’s estimation of the SFD : our penalized algorithm (at
the top), Baibaie-Zadeh algorithm (at the bottom) for the
mixing of two random signals.

6. CONCLUSION

A new convolutive BSS algorithm based on the minimiza-
tion of a penalized mutual information criterion is presented.
Unlike Babaie-Zadeh et al approach which uses implicitly
a tangential gradient method, our algorithm is based on a
global one due to the addition of a penalization term. So,
the simulations results have shown that this implementation
is proving to be much efficient in terms of stability and SNR’s
performance.

Appendix
Proof of the Proposition 1. Namely the following result
JE(n) =T (n)) = E{Ba(m) h'(n)}+
4NE {3 (n)"hi(n)} +o(h?),
= E B;Iq(n)Té"’x — k)}—i—

We can find a proof of the first part of the right hand side in

7000

7000

[4]. We propose to show the second part, we set:

N

B9 = S (EI6! —ERY - 17

i=1q;€Z

Without loss of generality, we assume :
Ep!] =0, Vi € {1,...,N}. First, we need the following
lemma:

Lemma 1 If'y denotes a random process and h a “small”
random process then

(E[y+m)*] =1)? = (ED*] = 1)* =4 (ED] = 1) E[yh] +o(h).

(12)
Proof —
vie{l,...,N},
(E[r+h)?—1)? = (Ep*—1)? =
(El+n? =1+ E*] = 1) (E[(r+h)*] - E[?])
= (E[* +2hy+ 1] =2) (E[(y+h)* — %))
= (E[20* +2hy+ 1] =2) (E[h(y+ 1)]) (13)

= (2E}?|+2E[yh]) — 2+ E[h?]) (E[hy] + E[h*])
= 4Ey*E[hy] — 4E[hy] + o(h)

=4(Ep?|— 1) E[yh] +o(h).

o
Applying the lemma to each component of y7 and 47 and
by summation over i {1,...,N}, we obtain :

HhG)—-h1) = sV.4 Ew%}lgﬂy?h?m(h%

S 4(ED97] = 1) Elvihi] +o(hi),
EwTh] +o(h).
(14)
which ends the proof. o
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