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ABSTRACT 

We propose a robust video hash function for broadcast 
monitoring and database search applications.  The method 
consists of binarized low-frequency components of the 
3D-DCT transform of video sequences.  Simulation ex-
periments show that the perceptual hash function is 
unique for different video content, but that it remains in-
variant under selected signal processing attacks.   

1. INTRODUCTION 

The need for identification and management of video con-
tent grows proportionally to the increasing widespread 
availability of digital media, and in particular, digital 
video.  The new challenge is to develop capabilities to 
archive, classify and retrieve video clips in a database, to 
identify and verify a given video, or to monitor content on 
broadcasts or streaming media. The one-way perceptual 
hashing of multimedia content is one of the well-known 
solutions. While the cryptographic hash function demands 
the exact replica of the bit string, the perceptual hash fo-
cuses similarity of content. In this sense it tolerates ma-
nipulations and modifications that leave the content simi-
lar. Most perceptual or robust hash schemes rely on the 
similarity of uncorrelated spectral features.     

Fridrich [1] addresses the tamper control problem of still 
images by projecting the image blocks onto random pat-
terns and thresholding.  Venkatesan [2] extracts the image 
hash for indexing and database searching from the statis-
tics of sub-band wavelet coefficients. Lefèbvre [3] uses 
the radon transform for a perceptual hash. Although these 
methods can be extended to series of images, a perceptual 
hash specific for a video sequence or a video clip is not 
much addressed in the literature.  

In our work, we employ a 3D DCT-based video visual 
hash extraction algorithm. The algorithm consists of a 
normalization step followed by the hash or signature ex-
traction step. The normalization converts given video 
segments into a standard spatio-temporal form. This is 
followed by the signature extraction where a hash se-
quence is extracted from the 3D DCT coefficients of the 
normalized sequence.   

We want the video signature to possess the properties of 
uniqueness and robustness.  A signature is robust if it does 

not vary when the video sequence is subjected to certain 
editing and signal processing operations, such as contrast 
enhancement or frame skipping. On the other, if the con-
tent is modified, then we expect a totally different signa-
ture. In this sense, every semantically different video se-
quence should possess a unique signature.    

In Section 2 the normalization of video segments is pre-
sented. The hash sequence extraction is explained in Sec-
tion 3. The experimental set-up and the performance are 
discussed in Section 4.   

2. NORMALIZATION OF VIDEO SEGMENTS 

In order to estimate a standardized video perceptual hash 
function it is convenient to first normalize the video 
sequence, that is to convert it to an equivalent sequence 
with a standard frame size and sequence length. This in-
volves a series of both spatial and temporal smoothing 
and subsampling operations.   

Let fhwVideo ;, , represent a video sequence by the 

name of Video, where w is the frame width, h is the 
frame height and f is the number of frames within the 
clip. For example, Foreman(176,144; 400) signifies the 
Foreman test sequence with QCIF dimensions 176x144 
and with 400 frames in total.  Since the essential semantic 
information resides in the luminance component, we per-
form all operations on this component. After normalizing, 
we denote the resulting normalized video sequence 

asVideoN ., .;. .   In our experiments, we have chosen 

the target dimensions of 32x32x64 because, on the one 
hand, they provide an adequately concise version of the 
video and, on the other hand, such a reduced sequence 
still contains sufficient content information for a discrimi-
nating signature to be extracted.  The normalization step is 
realized in two stages, that is, the temporal normalization 
and spatial normalization. 

2.1 Temporal Normalization 

The temporal smoothing extends the motion information 
over a larger number of frames and makes the video suit-
able for temporal sub-sampling. In other words, a tempo-
ral pixel tube of f-frames is considered for each of the 

wh

 

pixels in the video segment, denoted as iPT nm, 

wnhmfi ,..,1,,..,1,,..,1 . Each pixel tube is 
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then filtered via a low-pass (averaging) box filter with 
kernel size k . The kernel size is determined based on the 
trade-off between robustness and uniqueness. Too large a 
kernel size smoothens the video excessively so as to make 
it look like a blurred static image. On the other hand, if 
too small a kernel size is chosen, motion aliasing will un-
favourably impact on the extracted signature. We have 
found out in our experiments that 20k is a suitable 
value.  After temporal smoothing, the video signal is tem-
porally sub-sampled to reduce the number of frames to the 
target number 64.   

 

Figure. 1: Pixel Tube at the position (m,n) over f frames.  

It can be argued that a motion-compensated spatio-
temporal smoothing over a pixel neighbourhood can be 
better. In this case, the tube of each pixel neighbourhood 
would follow a curvilinear time trajectory over motion 
areas.  However, motion-compensation schemes demand 
considerable processing power. Furthermore, we obtained 
satisfactory signature extraction from separate spatial and 
temporal smoothing.  

2.2 Spatial Normalization 

Similarly, spatial smoothing and sub-sampling are applied 
to reduce spatial redundancy and to extract the low-pass 
content. Spatial smoothing is implemented by a 2D aver-
aging (box) filter. For the QCIF video signals used in our 
experiments, kernel dimensions of 7x7 proved satisfac-
tory.  Low-pass filtered frames were sub-sampled to the 
size 32x32.   

3. VIDEO HASH FUNCTION   

3.1 Hash Extraction 

We consider the 3D DCT (Discrete Cosine Transform) of 
the normalized vide sequence VideoN(32,32,64). We ex-
pect that the 3D DCT will capture the spatio-temporal 
information in the frame sequence.  The low-frequency 
DCT terms will be a robust representation of the semantic 
content, as they will reflect only the major changes in 
time or over space. Thus we select a subset of the trans-

form coefficients 64;32,32VideoNDCT . The basic 

trade-off of dictates on the one hand the choice of few 
low-pass DCT terms for robustness, and on the other 
hand, admission of some higher frequency terms for dif-
ferentiation of close but not identical content. Our tests on 

video sequences have revealed that overall 64 low-pass 
coefficients, that is, the 4x4x4 cube in low-to-middle band 
are adequate for signature extraction. We excluded the 
lowest frequency coefficients, which can be noted as 
DCT(i,0,0), DCT(0,j,0) and DCT(0,0,k), since these were 
observed to contain little discriminatory information.  

Finally these DCT coefficients were reduced to 1-bit by 
thresholding with respect to their median value. Any coef-
ficient above the median value is declared as a 1 , and 
any below as 0 , so that we are guaranteed to have 32 1 s 
and 32 0 s. The one-bit quantization adds robustness to 
the scheme, in turn for some loss in uniqueness of the 
signature. On the other, equipartition of the 1 s and 0 s in 
the signature brings in maximum randomness on the 64-
bit patterns and thus increases uniqueness.   

Let the rank-ordered selected DCT coefficients be denoted 

as 64,...,1, iC i , for some video sequence. The me-

dian m is defined as 2/)33(32 CCm .  Once the 

median is determined, then quantization is performed as 
follows:   

1

0

(i)

i
(i)

C m
h    

C m

 

where ih is the thi bit of the perceptual hash of the video 

signal, which is to identify a video sequence.  

3.2 Properties of the Hash Sequences 

We assume that all possible bit sequences are equally 
likely to occur. Recall that a hash sequence to be admissi-
ble must have equal numbers of 1s and 0s. It follows that 
the total number of possible hash sequences, N, is given 

by: 
64 64
32 32 32

18N 1.8326 10
!

! !
. 

We want to calculate the Hamming distance between any 
two arbitrarily selected hash sequences. Among all admis-
sible sequences, we select, without loss of generality, the 
special hash sequence in Fig. 2. This hash sequence has 
all 0s in the first 32-bit half portion and all 1s in the sec-
ond half, and is used as a reference sequence for further 
Hamming distance calculations. 

 

Figure 2: Special 64-bit hash pattern selected for probabil-
ity calculations.  

The Hamming distance between this special hash and 
another arbitrary selected hash is determined by the num-
ber of 1s found in the first half plus the number of 0s 
found in the second half. Let s in fact denote by 
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11 0,1 nn the number of 1s and 0s in the first portion, 

respectively, and similarly by 22 0,1 nn those in the 

second half. Finally let s denote the Hamming distance 

with respect to the special hash sequence in Fig. 3 as H* :  

(1) 

Also, we know the following equalities: i) 

3211 21 nn , ii) 3200 21 nn , iii) 

3201 11 nn , and iv) 3201 22 nn . Combining 

equation (1) with identity (ii) and then (iii) we obtain:  

(2) 

Equation (2) states that the Hamming distance between 
two arbitrary hashes is always an even number, as obvious 
from the fact that changes in the number of 1s must be 
compensated from an equal number of changes in the 
number of 0s, and vice versa. Since the occurrence prob-
ability of a 1 bit or a 0 bit is equal, we can use the bino-

mial model to calculate the probability distribution of 11n :  

(3)  

Combining equation (2) with equation (3) the Hamming 
distance between hashes of two arbitrary selected video 
clips can be written as in equation (4), which is also plot-
ted in Figure 3. 

(4)  

Since the 11nP is the binomial probability function, we 

have the following mean and variance values: 

3212 1nEHE n 
and 162 2

1
2

1nHn
. 

4. EXPERIMENTAL RESULTS 

In the following experiments we prove two properties of 
the proposed perceptual video hash function:  a) robust-
ness, that is that the hash function does not get affected 
from signal processing attacks and editing effects; b) 
uniqueness or randomness, that is the hash sequence is 
clearly different for different video content. The differ-
ence of two hash sequences is measured in terms of the 
Hamming distance. Furthermore, in order to assess the 
quality of the video after attacks, the distance between a 
video sequence and its attacked version is measured with 
the Structural Similarity Index SSIM of Bovik [4,5].  The 
SSIM looks beyond simple pixel similarity and considers 
a higher-level interpretation of distortion. The SSIM goes 
from 0 to 1 as the similarity increases and becomes 1 for 
two identical images. The SSIM index of two video se-
quences is simply defined to be the mean of the SSIM 
indexes between their corresponding frames.  

4.1 Uniqueness of the Video Hash 

In our experiments, we calculated the Hamming distance 
between several video clips, and we observed that their 
distribution fits the binomial case. In Figure 3, the histo-
gram of Hamming distances between original (un-
attacked) video clips is presented along with the theoreti-
cal binomial distribution. We used 45 video clips and 
computed 45(45-1)/2 = 990 Hamming distances. It can be 
observed that experimental hash values follow closely the 
theoretical distribution, confirming the uniqueness or ran-
domness assumption. Notice that in this experiment the 
video clips were obtained from a football game sequence, 
that is all clips of the same genre.   

4.2 Robustness of the Video Hash 

We conducted experiments under several editing and sig-
nal processing attacks to test the robustness of the scheme. 
Some of the attacks were very severe in that the video 
sequence became almost unrecognizable, e.g., under blur-
ring or contrast decrease, though the content was not ma-
nipulated. The resulting Hamming distances are summa-
rized in Table 1.   

The Hamming distance between the hash sequence of 
attacked video shot and that of its original deviates very 
little from zero, and in no way confounding an attacked 
video with another original content video. From the two 
distance histograms in Figure 3, a threshold value of 20 
can be chosen, which fixes probability of false alarm at 
0.01. The threshold ( th ) is calculated from equation (4).   
This threshold indicates the line of demarcation between 
the attacked versions of a video and a video with some 
other content.   

The following comments can be made:  

 

In blurring attack, almost all the Hamming distances 
are below threshold value since that even very heavy 
blurring does not disturb low frequency DCT coeffi-
cients too much. Interestingly, contribution to Ham-
ming distances come from plain and almost static 
video frames, since their low-frequency DCT coeffi-
cients are close to each other and susceptible to sign 
changes with small perturbations. 

 

AWGN attack simply superposes high frequency 
components on the video segment. Such perturbations 
are virtually unnoticed by our hash functions  

 

Contrast manipulation attack modifies the range of the 
pixel values but without changing their mutual dy-
namic relationship of pixels. However, extreme con-
trast increase results in pixel saturation to 255 and 
clipping to 0, which forms low frequency plain re-
gions and consequently causes changes in the hash. 

 

In brightness manipulation attack, the perceptual hash 
is also robust. However, when brightness manipulation 
is taken to the extreme of saturation (too dark, clipped 
to 0 or too bright, saturated to 255) the hash function 
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suffers.  Notice however this level of attack is not very 
realistic, as the video would loose most of its value.  

 
In sharpening attack, the edges are enhanced by su-
perposing high-pass components onto video segments 
themselves while maintaining the low-pass compo-
nents and consequently leaving perceptual hash intact. 

 
In frame dropping attack, the gaps between dropped 
frames are filled with the replicas of adjacent frames. 
The perceptual hash is distorted as the temporal low-
pass components are distorted by replication, after 
which the video becomes very annoying. 

 

The Mpeg-4 compression basically removes the high 
frequency redundancy and so has very little effect on 
perceptual hash.   

In Table 1 we give the mean ( H) and standard deviation 
( H) of the Hamming distances and SSIM scores. The 
SSIM scores indicate the strength of attacks at a level 
where, either the Hamming distance has reached the 
threshold or, the Hamming distance stays low due to ro-
bustness of the hash, but the image has suffered enough 
distortion to be unacceptable from SSIM point of view.  
The miss probability  PM denotes the probability of ac-
cepting the hypothesis of a different content, while only 
the original content was distorted.  
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Figure 3: Histogram of Hamming distances between un-
attacked video clips (narrow bars); Histogram between 
original video and its attacked versions (wide bars). The 
threshold set at false alarm of 0.01.   

The correlation coefficient between Hamming distance 
and SSIM is given in Table 2. In most of the attacks we 
observe very weak correlation because, as the SSIM de-
creases gradually, the Hamming distance still tend to stay 
close to zero, which is required from a perceptual hash.  
However, since Hamming distances rapidly increase in 
cases of saturation and clipping, the magnitude of correla-
tion is high in brightness manipulation and contrast in-
crease.  

5. CONCLUSION 

We proposed a new method for identifying video seg-
ments via short robust hashes. The hash is shown to be 
robust against video-processing attacks, which cause 

small perturbations on the video segment, but does not 
significantly modify the semantic content. On the other 
hand, the hashes of different video segments, even of the 
same genre and subject, yield totally different hash se-
quences in terms of Hamming distances. Thus the hash 
sequence, which is shown to be adequately unique and 
robust, can be used in such applications as broadcast 
monitoring, video database searching and etc. We pursue 
the evaluation of the hash function against a bigger set  of  
attacks, and we explore alternative hash sequences, as 
derived from median thresholding of wavelet coefficients.     

Table 1: Hamming distance for various attacks. (PM : Prob. 
of miss) 

Attack Hamm. Dist. 

 

( ) 
SSIM  

 

( ) 
PM 

Blurring 1.13(1.22) 0.53(0.16) 0 
AWGN 0.48 (0.97) 0.57(0.33) 0 
Cont. Inc 4.11(3.90) 0.72(0.21) 0 
Cont. Dec 0.26 (0.74) 0.78(0.19) 0 
Bright. Inc. 2.72 (3.33) 0.82(0.11) 0 
Bright.  Dec 5.92 (5.62) 0.52(0.30) 0.014 
Sharpen 1.88(1.29) 0.85(0.06) 0 
Frm. Drop&Repeat 4.90(4.24) 0.64(0.13) 0.017 
Mpeg4 Compress 0.34(0.78) 0.76(0.02) 0 

 

Table 2: Correlation between Hamming and SSIM scores 
under various attacks.  (CC: Correlation Coefficient) 

Attack Type CC 
Blurring -0.10 
AWGN -0.56 
Contrast Increase -0.81 
Contrast Decrease -0.31 
Brightness Increase -0.73 
Brightness Decrease -0.82 
Sharpen -0.22 
Frm. Drop&Repeat -0.58 
Mpeg4 Compress -0.02 
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