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ABSTRACT

Univariate Mixed Poisson distributions (MPDs) are com-
monly used to model data recorded from low flux objects
or with short exposure times. They assume that the num-
ber of recorded events, conditioned on the received random
intensity, is Poisson distributed. This communication fo-
cuses on the generalization of the MPDs to the multivariate
case. This generalization is required to tackle new challeng-
ing problems such as exo-planet detection using direct imag-
ing. The joint moments and the moment generating func-
tion of a multivariate mixed Poisson distribution (MMPD)
are derived. These quantities allow to characterize the over-
dispersion, dependency or unicity properties of the distribu-
tion. The important example of negative multinomial dis-
tributions is considered. These distributions are obtained
when the mixing distribution is a multivariate Gamma dis-
tribution. Conditions ensuring that MMPDs belong to a
natural exponential family (NEF) are finally investigated.

1. INTRODUCTION

Mixed Poisson distributions (MPDs) are commonly used to
model data recorded from low flux objects or with short
exposure times using photocounting cameras. This model
arises from the semi-classical theory of statistical optics [5].
In this theory, the classical theory of propagation is used up
to the camera, leading to a high flux image. Denote by A,
the intensity on pixel £ and by u(dA;) its probability. Con-
ditionally to this image, the number N; of photons counted
on pixel ¢ is distributed according to a Poisson distribution
whose mean is the high flux intensity. Consequently, the
probability of detecting k photoelectrons on pixel ¢ can be
expressed as:

+o0
Pr(N; = k) = / p(Ne = KA (),

+oo ()
_ / O exp (—ar (). (1)

Eq. (1) is referred to as the Poisson Mandel transform in
optics or the mixed Poisson distribution in statistics. This
paper assumes « = 1 without loss of generality.

MPDs can be used to address important estimation
or/and detection problems in astronomy, image processing
or medical imaging. For instance, in astronomy the random
nature of the intensity arises from the wave-front phase dis-
tortion by the atmospheric turbulence. This produces images
with speckle patterns changing continually in time. Since the
work of Labeyrie [11], many authors have proposed to take
advantage of speckle patterns for high resolution imaging.
In order to avoid the bluring of the speckle which destroys
the high resolution information, the turbulence is “freezed”
by very short time exposures which leads to photo counting.
In the last decade an important amount of work has been
devoted to adaptive optics in order to correct the distortion

of the wave-front. However, the challenging problem of exo-
planet detection using direct imaging is at the origin of a re-
newed interest for these models. The intensity ratio between
the planet and the star is very low (= 102 after coronogra-
phy). As a consequence, residues of turbulence coming from
adaptive optics can reduce considerably the detection per-
formance. The MPDs defined in (1) are also useful in many
other applications. These applications include active imag-
ing where the image is formed from a scene illuminated with
laser light [6] or actuarial statistics to model the number of
accidents [7].

Univariate MPDs have been extensively studied in the
literature (for example see [7, 8] and references herein). How-
ever, their multivariate extensions have received less atten-
tion. These extensions are important since they allow to
model statistical dependence between the observed data,
which is required to achieve tasks such as estimation or de-
tection with high performance. This paper reviews the main
properties of Multivariate Mixed Poisson Distributions de-
noted as MMPDs.

Section 2 derives the joint moments and the moment
generating function of MMPDs. The relation between the
joint factorial moments of MMPDs and the mixing density
moments is also provided. Other properties such as over-
dispersion, unicity of the mixing density for a given MMPD,
and necessary and sufficient conditions for independence are
also studied. Section 3 focuses on MMPD examples with
a particular interest for intensities distributed according to
multivariate Gamma distributions. Section 4 studies condi-
tions ensuring that MMPDs belong to a natural exponential
family (NEF). This result is important since the computa-
tional complexity of most estimation or detection methods
is usually reduced when applied to distributions belonging
to an NEF.

2. PROPERTIES OF MMPDS

2.1 Definitions

An MMPD is defined by assuming that the random variables
N;,i=1,...,d are independent and distributed according to
Poisson distributions with means (A1,...,A4), conditioned
upon the vector of intensities XA = (A1,...,Aq). In this case,
the probability masses of N = (Ny,..., Ng) are defined as

Pr(N = k) ://1;[ (Akf[)!k“

R4

exp (=Ae)u(dA),

where p(d) is the probability of X defined on (R*)?. The
MMPD defined above is fully characterized by the measure
1(dX) and will be denoted by MPPD(y) in this paper.

2.2 Joint moments

Multivariate factorial moments yield much simpler expres-
sions than classical joint moments as in the univariate case.
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By denoting N = N(N—1)(N—r+1), the following results
can be obtained:

d d d
E (H NIE””) =E (H E(N,Erkluk)) —E (H A?) ()
k=1 k=1 k=1

The last equality has been obtained from the factorial mo-
ments of a Poisson distribution. Joint moments can be de-
rived by substituting in E(TJ{_, N;*) each N;* by its ex-
pression as a function N,gr], r < rg, (see for example [9, p.
44]). Expanding the products and using (2) yields:

d 1 T4 d d
E (H N,:k) = Z Z HS(rk,jk)E (H A{ck) ’
k=1

J1=0  jg=0k=1 k=1
where S(j, k) are the Stirling numbers of the second kind [9].

2.3 Covariance matrix

Eq. (2) allows to obtain the following relation between the
covariance matrices of N and A:

Cov(IN) = Cov(A) + Diag(E(A1), ..., E(A1)), (3)
= Cov(A) + Diag(E(N1),...,E(Ng)).  (4)

Note that (3) has been used in [4] to study an approximate
autoregressive model for high flux images.

2.4 Over-dispersion

For d = 1, eq. (4) shows that an univariate MPD is an
over-dispersed distribution, i.e. a distribution with mean m
and variance o’such that m < o” [7, p. 3]. The definition
of over-dispersion for multivariate distributions is not stan-
dard. In this paper, we propose the following definition: the
distribution of N = (Ni,...,Ny) on N is over-dispersed if
Cov(IN) — Diag(E(N1), ..., E(Ng)) is a semi positive definite
matrix. Thus, (4) shows that MMPDs are over-dispersed.

Checking that Cov(IN') — Diag(E(N1),...,E(Ng)) is not
semi positive definite allows to reject the hypothesis that IV
has a MMPD. For example, consider multivariate correlated
Poisson distributions N defined on N? by the following gen-
erating function [12]:

d
E (H z]]gv’“> = exp (Z aT(zT — 1)) (5)
k=1 T

where the sum ), covers all non empty subsets T of
{1,...,d}, ar > 0 and 27 = [licrzi- Eq. (5) shows that
each random variable Nj has a Poisson distribution (such
that E(N) = var(Nk), Vk = 1,...,d). This implies that
the matrix Cov(IN) — Diag(E(NV:),...,E(Ng)) has zeros on
its main diagonal. Consequently, this matrix is semi positive
definite if it is zero, or equivalently if the random variables
(N1, ...,Ng) are independent.

2.5 Moment generating function

Denote by 9,(2), z € C? the Laplace transform of u:

Yu(z) = /][;d 6<z’/\)l//(d)\) =E (ezgél Zeke) ) (6)

The moment generating function of IN expresses as:

d d J
E (H zﬁk) =E (H E(z,iv’“lkk)> —E (H eAk(zk—1)>
k=1 k=1 k=1

— g =1z =) = (2 =1, (7)

2.6 Unicity

The relation between 1, and the moment generating func-
tion of IN allows to prove the unicity of the mixing density
for a given MMPD:

MMPD (1) = MMPD (11s) < 11 = pao.

Consider the univariate case (d = 1) for simplicity. Eq. (1)
can be written:

Pr(N = k)k! = /oo Moe ™ u(dn)

Thus, the knowledge of MMPD(y) allows to determine the
moments of the measure e~*1(d\). However the knowledge
of the moments is generally not sufficient to determine the

measure itself [3]. This section shows that this is the case in
the context of MMPDs.

Proof (d = 1). The knowledge of MPPD(u) allows to de-
termine the function z — E(z") defined in the open unit
disk D = {z € G ||z|| < 1}. Thus from (7) the function
z + (2 — 1) is known in D. However, 1,(z) is analyic in
the half plane {z € C; Rz < 0} (where Rz is the real part
of z). Thus z — ¢, (z — 1) is also analytic in the half plane
{z € C; Rz < 1}. From analytic continuation it is known on
{z € C; Rz < 1}. The unicity of Laplace transform allows
to determine p, which concludes the proof.

Note. The proof is similar for d > 1. However, it requires
some uncommon material about several complex variables
and we skip it here.

2.7 Independency

Eq. (7) shows that (N1, ..., Ny) are independent if and only
if (A1,...,q) are independent.

3. EXAMPLES OF MMPDS
3.1 Dirac Intensities

If p is the Dirac mass at (A1,...,Aq) then Ni,..., Ny are in-
dependent random variables distributed according to Poisson
distributions with parameters A1,..., Aq.

3.2 Multivariate Gamma Intensities
3.2.1 Definition

A polynomial P(z) with respect to 2z = (z1,...,zq) is said to
be affine if Vj = 1,...,d the one variable polynomial z; +—
P(z) has the form Az; + B, where A and B are polynomials
with respect to the z;’s with ¢ # j. For any ¢ > 0 and for any
affine polynomial P(z), a multivariate Gamma distribution
on (R*)¢ with shape parameter ¢ and scale parameter P(z)
(denoted as vq4,p) is defined by its Laplace transform [2]:

Prg p (2) = [P(2)] 7, (8)

on a suitable domain of existence.

This distribution has an important practical application
in optics. Indeed, the complex wave-front amplitude is gener-
ally modeled as a zero mean circular Gaussien vector with co-
variance matrix C. Consequently, the square modulus of the
complex amplitude referred to as intensity is distributed as
the diagonal terms of a Pseudo-Wishart distribution whose
Laplace transform is:

Yu(z) = det(I; — Diag(z1,...,24)C) "

Eq. (8) shows that p is a multivariate Gamma distribution.
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3.2.2 MMPDs generated by multivariate Gamma intensities

For any ¢ > 0 and for any affine polynomial P(z), a nega-
tive multinomial distribution NM, p on N* is defined by its
generating function [1]:

d
: (H ) e o)
k=1

Determining necessary and sufficient conditions on the pair
(g, P) such that 4, p or NM,, p do exist is a difficult problem.
The reader is invited to look at [2, 1] for more details.

For any real numbers a;’s and b;’s, a new affine polyno-
mial can be easily constructed as follows:

Pl(zl, .. .,zd) = P(alzl +bi,...,042d +bd).
Equations (7,8,9) show that the MMPDs associated to the
Gamma distribution 7, p are the negative multinomial
distributions NM, p, with Pi(z) = P(z —1).

3.2.8 Line Multivariate Gamma Distributions (LMGDs)

These distributions are a particular case of multivariate
Gamma distributions where the affine polynomial is P(z) =
1—aiz1 — - —aqzq. They are the distributions of the vec-
tor (a1Y,...,aq4Y), where YV is distributed according to an
univariate Gamma distribution v4,1. Note that LMGDs are
concentrated on [0, 00)? if and only if ay, > 0 for all k. The
MMPD images of these distributions by u — MP(u) are
the negative multinomial distributions on N? with generat-
ing function
E(z' ... 2)") = (1 — ¢larz1 + - - - + aaza)) %,

where ¢ = (1 + a1 +--- 4+ ag)”". If some of the a}s are zero
(say a; > 0if and only if i < m), the line y — (a1y,...,amy)
is concentrated on [0,00)™ and the corresponding LMGDs
are concentrated on N™. LMGDs will play an important role
in the next section of this paper.

4. MPDS BELONGING TO A NEF

Denote by 1, (8) the Laplace transform of a positive measure
v defined for § € R? (see (6). The Holder inequality proves
that the set D(v) of # € R? such that 1, (§) < oo is a convex
set and that & = log, is a convex function on this set.
Denote by ©(v) the interior of D(v) and assume that ©(v)
is not empty. Then the set F(v) of probabilities

po(dX) = eV F Oy (ay),

where 6 runs ©(v) is called the NEF generated by v. Note
that F(v) = F(v1) does not imply v = v; but only the
existence of some a € R? and b € R such that v(d\) =
ef@M oy (dA). Thus a member p of the NEF F(v) can al-
ways be taken as a generating measure. However, some gen-
erating measures are not necessarily probabilities and can be
even unbounded. We mention also that § s (@M =*®) 3 (g))
is called a canonical parametrization of the NEF. Other
parametrizations of the type t +— e<°‘(t)’k)+ﬁ(t)u(d)\), with
B(t) = —k(a(t)) could be considered. The problem ad-
dressed in this section is the following; given an NEF F(v),
can we claim that {MP(ug); 6 € ©} is also an NEF, pos-
sibly with a non canonical parametrization? The univariate
(d = 1) and multivariate (d > 1) cases are studied separately
in the two following sections.

4.1 Univariate MPDs (d = 1)

The problem is simple when F(v) is the family of Gamma
distributions with fixed shape parameter ¢q. We know
that a generating measure for this family is for instance

v(d)\) = X~ 11R+(A)% [10, p. 662]. The image family
{MP(ug); 6 € O} is the NEF of negative binomial distri-
butions generated by Y27 fip(p+1)...(p+k — 1)d [13].
However, eq. (1) does not automatically maps a distribution
belonging to an NEF to an NEF. The next proposition shows
that N and A belong together to an NEF only if F(v) is the
family of Gamma distributions with fixed shape parameter.

Theorem 4.1. If the image of the NEF F(v) on [0, 00) by
u — MP(p) is still an NEF, then either v is a Dirac measure
or there exists ¢ > 0 such that F(v) is the family of Gamma
distributions with fixed shape parameter q.

Proof. If v is the Dirac mass at zero, the result is obvious
since M P(v) has a Poisson distribution. In the other case,
denote by ¢, (0) = [° e v(d)) for § € O, where © is the
interior of the convergence domain of v, (). Note that O is
either R or some half line (—oo,a). Suppose that the image
of F(v) by u — MP(u) is a NEF on N generated by some

measure Z Opnén. Thus there exists two functions a and
[ defined on © + 1 such that for all n
/°° A(6— 1) >\ V(d) = pre @ @O+E®) (10)
0
which can be rewritten
M0 —1) = nlp,e™> @O, (11)

Since v is not the Dirac mass at zero, v is not a constant.
Being a Laplace transform, ¢ cannot be a polynomial and
™ cannot be identically 0. This implies p, # 0 for all n.
Eq. (10) shows that o and § are real-analytic functions on
the interval © + 1. Indeed 6 — 1, (f — 1) is analytic in the
half complex plane © + 1 + ¢R as well as its nth derivative

{™) (§—1). Furthermore 1" (6—1) is positive on ©+1 (since
pn > 0) thus its logarithm is real-analytic. Consequently
na + B and (n + 1)a + B are real-analytic on © + 1, which
implies by linear combination that o and 3 are real-analytic
on © + 1. This proves the existence of o'(f) and 3'(). By
taking the logarithms of both sides of (11) and differentiating
with respect to 6, the following result can be obtained

e -1 _

Ty = O+ 5O, (12)

Assume first that a = o’(6) # 0 and denote 65 = 6o + 1 and
q = B(60)/'(6p). Eq. (12) can be written ,(,"H)(%) =
a(q +n)y™(63) and thus

o (95)
n!

= (05)ala+1)... (g+n—1)2

nl
The Taylor formula applied to the analytic function v (for
small values of h) can be written as follows

: - L (ahy
o (05 + 1) = 1, (65) ;qqﬂ% (g+n—1)—

= (60)(1 — ah)™".

Since the Laplace transform is an analytic function, the re-

sult wd)—(o("% = (1 —ah)™? is valid for any h € (—o0,1/a).

For a > 0, the right hand side of this expression is the
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Laplace transform of the Gamma distribution v4,1-4n (usu-
ally denoted as 7q,o). Moreover, the Laplace transform of
Koz is

oo 0o _A(h+85) «
AR e (65 + h)
«(dX) = ————v(d)\) = ————,

A € “90( ) A ek'((i‘o) V( ) 1/}(06)

which shows that pgs = v4,a. In other words, the exponen-

tial family for {MP(ug); 6 € ©} is the family of Gamma

distributions with fixed shape parameter g.

If o/ (B) = 0, (12) yields L7 2C8) _ g/(g0) which leads

p()(6%)
to % = ¢# (0" This is the non interesting case where
0

the exponential family for {MP(ug); 8 € O} is the Dirac
measure concentrated on the point 3’ (o).

4.2 Multivariate MPDs (d > 1)

4.2.1 NEFs generated by multivariate Gamma distributions

Denote by ©(v,,p) the set of § € R? such that the Laplace
transform of v, p converges (one can prove that ©(v,,p) is
open). The NEF generated by 7, p is the set of distributions
whose Laplace transforms are ¢)(z) = [Py(z)]77 where

P(91 + Zlyeney 9d + Zd)
P =
v(2) P01, ... 04)

) 9 € e(’Yq,P)-

Since Py is an affine polynomial, the NEF generated by v4,p
is included in the set of multivariate Gamma distributions
{Va,Ps; 0 € O(vq,p)}. Note that for d > 1 and for a fixed
affine polynomial P, {v4,p,;0 € O(yq,r)} does not contain
all Gamma multivariate distributions of shape parameter q.

4.2.2 NEFs generated by Negative Multinomsial distributions

Similarly, denote as ©(NM,,p), the set of # € R? such that
the moment generating function of NM, p converges (here
again one can prove that ©(NM,, p) is open). The following
notation is useful

W(NM, p) = {w = (', ...,e");0 € O(NM,,p)}.

The NEF generated by NM, p is the set of distributions
whose generating functions can be written E(HZ=1 z,]cv’“) =

[Pw(2)]"* where

P(wlzl, vy ded)

Pw(z) - P(w1 wd)

, WE W(NMq,p).

Since P, is an affine polynomial, the NEF generated by
NM,,p is included in the set of negative multinomial dis-
tributions {NMy, p,;w € W(NM, p)}. Note again that this
family does not contain all negative multinomial distribu-
tions with shape parameter q.

4.2.83 MMPDs generated by the NEF of MPDs

Consider a Gamma multivariate distribution 7,,p and the
corresponding NEF {v4 p,,0 € O(v4,r)}. The MMPDs gen-
erated by this family are the distributions whose generating
functions are

d
- (H ) (o= 1) = Qo)
k=1

where Qg(z) = Ps(z — 1). As a consequence these distribu-
tions belong to the set of negative multinomial distributions
{NMy,0,;0 € O(yq,p)}. Surprisingly, this family is NOT in
general an exponential family. Indeed, it is generally not

possible to find an affine polynomial @ and a map 8 — w(6)
from ©(v,,p) to (RT)? such that the following identity holds

Q(w1 (9)2’1, ceey wd(0)zd)
Q(UJl (9)7 E) wd(e)

The solution to the initial problem of finding NEFs on
[0,00)% such that the MMPD image by p — MP(p) is still
an NEF is provided by the following theorem:

Theorem 4.2. If the image of the NEF F(v) on [0, 00)%
by p — MP(u) is still an NEF, then there exists a par-
tition {To,Th,..., Ty} of {1,...,d} (with possibly To = 0)
and there exist non negative numbers a1, ..., aq and positive
numbers p1, ..., pg such that F(v) has a generating measure
1 with Laplace transform

Y. (6) = e>neo kO ﬁ (1_ Z ak9k) m.

m=1 kETH

Q9(2’1, .

S 2d) =

Equivalently, ug is the product of LMGDs or the product of
LGMDs and a Dirac measure.

Proof. The proof is omitted for lack of space.

5. CONCLUSIONS AND OPEN PROBLEMS

This communication has studied important properties of
MMPDs: joint moments, moment generating function, over-
dispersion and conditions ensuring that MMPDs belong to
a natural exponential family.

The use of MMPDs to solve various imaging problems
is currently under investigation. These problems include 1)
indirect 1maging, where the speckle intensity fluctuations are
usually assumed to be (marginally) Gamma distributed and
2) planet detection by using direct imaging and assuming a
perfect coronograph.
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