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ABSTRACT

Various coding schemes based on lifting implemen-
tation of the discrete wavelet transform applied along
motion trajectories have recently gained a lot of inter-
est in video processing community as strong candidates
to succeed current state-of-the-art hybrid coders. Still,
there are a number of very important issues, including
the choice of particular wavelet transform and motion
model, that have significant impact on the overall cod-
ing performance and will determine usefulness of this
class of coders. In this paper, we classify and discuss
different motion/transform configurations that are be-
ing used in motion-compensated lifting-based wavelet
transforms. Our results show that coder performance
changes significantly for different combinations of mo-
tion models and transforms used.

1. INTRODUCTION

Lifting implementations of the discrete wavelet trans-
form (DWT) have drawn a lot of attention in the im-
age and video processing community; they allow fast
and memory-efficient implementation of the transver-
sal (standard) wavelet filtering [1]. Recently, lifting has
been extended to the temporal dimension and, in or-
der to increase subband decomposition efficiency, has
been combined with motion compensation [2, 3, 4]. It
is well-known that perfect reconstruction is an inher-
ent property of the lifting structure, even if the input
samples undergo non-linear operations, such as motion
compensation [5, 6, 7]. However, in order for a lifting
structure to exactly implement the original transversal
wavelet filtering, motion transformation must be invert-
ible for the Haar wavelet while motion composition must
be well-defined for other wavelets [8].

In addition to very popular and widely used block-
based motion models, deformable-mesh motion mod-
els have been proposed for DWT video coding [7].
Applied within motion-compensated lifting framework
these models allow efficient temporal subband decom-
position along motion trajectories. Moreover, since
deformable-mesh motion models are invertible and since
motion composition is well-defined for them, motion-
compensated lifting based on these models implements
exactly the transversal wavelet filtering along motion
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trajectories and thus results in exact temporal sub-
band decomposition. Invertibility of mesh-based mo-
tion model overcomes many of the problems observed in
block-based motion since the existence of unique trajec-
tories (i.e., one-to-one correspondence between all posi-
tions in analyzed frames) doesn’t allow for appearance of
“disconnected” pixels. However, the inherent smoothing
of motion fields in mesh-based motion estimation algo-
rithms can have a negative effect on motion compensa-
tion effectiveness.

In this paper, we compare block-based and mesh-
based motion models in the context of motion-
compensated lifted DWT video coding. We perform the
comparison on the so-called 1-3 lifting [9, 7, 10] using
a single block motion field per frame and 5-3 lifting us-
ing two block motion fields per frame or one mesh-based
field. We include in this comparison 5-3 lifting with a
recently proposed refinement of the standard triangular
mesh-based model [11]. We also discuss tradeoffs in rate
allocation between texture and motion.

2. MOTION MODELS

The popular block-based motion models, such as one
used in MPEG and H.26X standards, would be an ob-
vious choice for use in motion-compensated lifted DWT
video coding. Typically, each block undergoes trans-
lation, although more complex motion can be used as
well (affine, quadratic models). An error metric mea-
suring the quality of matching between blocks in two
frames is defined and a minimization algorithm is de-
vised to find the optimal set of parameters. There
exists a large body of results concerning the choice of
the metric and parameter estimation algorithms. More-
over, over the years a variety of hardware implementa-
tions have been developed thus making the block model
very suitable for real-time video coding. However, nu-
merous attempts to incorporate this motion model into
3D-DWT coding structure suffered from the appearance
of the so-called “disconnected” pixels [12] occurring in
areas not conforming to the rigid translational motion
model (e.g., expansion, contraction, rotation) and in oc-
cluded/exposed areas. These difficulties stem from the
fact that translating-block models do not preserve topol-
ogy of the mesh induced by block vertices; although
blocks form a partition of the reference frame (square
blocks shown in Fig. 1(a)), this is not the case for the
target frame (blocks may overlap).

1975



(a) Block-based motion model (b) Standard triangular mesh (c) Proposed triangular mesh

Figure 1: Examples of different node-point topologies.

Recently, mesh-based motion models have been
shown to be a good alternative to block-based models.
In a regular-mesh case, regular topology is used to par-
tition the reference frame. This mesh is subsequently
deformed, by node-point displacements, into another
mesh in the target frame. Although topology may not
be preserved in a general case, it is possible to constrain
node-point movements so that the topology is preserved.
Since displacements for points between mesh nodes are
interpolated, mesh-based models can account for non-
rigid motion. This is unlike block matching where each
block is a allowed a single displacement thus modeling
accurately only rigid-body translational motion.

Although node topologies can be complex, a very
successful approach has been to use triangular patches,
where, through a suitable model, displacements of
three neighboring nodes define displacements anywhere
within a triangle. A triangular mesh can be built from
the common square-block partitioning thus preserving
block positions in the reference frame; mesh nodes can
be set at the corners of all square blocks and each
block divided in half along its diagonal (Fig. 1(b)). Mo-
tion compensation within each mesh element (patch) is
typically accomplished by affine spatial transformation
whose parameters are computed from node-point mo-
tion vectors. This corresponds to a planar interpolation
of the horizontal and vertical components of node-point
displacements over the whole patch. As the result, affine
model assures motion continuity between neighboring
patches.

It is well-known that motion estimation between two
images fails whenever a given intensity structure exists
in one image but not in the other (occluded and newly
exposed areas). Unfortunately, since this is common, al-
most always parts of images have undefined (underlying)
motion. In practice, since motion of all image points is
needed for compression, an error norm is defined and
minimized with respect to some parameters. The com-
puted motion has nothing to do with the true (under-
lying) motion in this area, but can be used effectively
for compression. In mesh-based motion estimation, this
is addressed by adapting the mesh topology to image
content, however it results in increased computational
complexity and significant motion-rate overhead.

A particular case of occluded and newly-exposed ar-
eas are image boundaries. Whenever a camera moves
and/or objects leave or enter the field of view, features
disappear or appear. This results in significant discrep-

ancies between original and predicted frames along the
frame boundaries, and leads to a reduced compression
efficiency. In order to address this, an improved mesh-
based motion compensation was recently proposed [11].
A new triangular mesh topology is created by shifting
mesh node-points by half of the inter-node distance to-
ward inside of the frame while constructing a double-
density mesh at the frame boundary (Fig. 1(c)). In this
way, errors in node-point motion estimates affect fewer
pixels than in the standard triangular mesh case.

3. TEMPORAL DWT MODELS

In this paper, we consider temporal 5-3 lifted DWT,
and a recently proposed alternative, the so-called 1-3
lifted DWT [9, 7, 10]. The latter transform consists of
the same highpass filter as in the regular 5-3 transform
but associated with a simple downsampling operation
instead of lowpass filtering and downsampling. This ap-
proach has already been exploited as a temporal trans-
form in fast coders, because for non-invertible motion
only one motion field per frame needs to be computed
for the 1-3 lifting transform in contrast to two motion
fields in the case of the 5-3 lifting transform. A related
benefit is that for the 1-3 transform only half of the
motion vectors need to be encoded as compared to the
usual 5-3 transform. These rate savings do not come
free since the 1-3 transform has significant overlap of
frequency subbands and thus low-subband wavelet coef-
ficients carry significant amount of information from the
high-subband (this can be thought of as additional alias-
ing due to lack of lowpass filtering). If motion is inaccu-
rately computed, however, error due to imprecise motion
compensation in the low-subband of the 5-3 transform
may manifest itself as “ghosting”, and may be, in fact,
comparable to the additional aliasing error in the 1-3
transform. It remains to be seen at what motion accu-
racy the two errors are of the same magnitude.

4. MOTION/TRANSFORM
CONFIGURATIONS

We are describing below different motion and transform
configurations. In the case of 5/3 transform, the various
motion models used aim at varying the ration of rate
allocated to texture and motion. Table 1 lists the eight
configurations for wavelet video coding discussed below.
All eight configurations utilize lifting implementation of
the wavelet transform.
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Table 1: Overview of different coding configurations (MF = motion field, BM = block matching, fr = frame)

Code Transform MFs/fr Motion model Motion estimation 2×MF coding Inverse MF

1-3 1-3 1 Block BM N/A N/A

5-3-Ind 5-3 2 Block BM Independent N/A

5-3-Jnt 5-3 2 Block BM Joint N/A

5-3-Prv 5-3 1 Block BM N/A Previous-frame

5-3-Col1 5-3 1 Block BM N/A Collinear

5-3-Col2 5-3 1 Block Constrained BM N/A Collinear

5-3-Msh 5-3 1 Triangular mesh Hexagonal refin. N/A N/A

5-3-ModMsh 5-3 1 Modif. tri. mesh Hexagonal refin. N/A N/A

1-3 lifted DWT
In this case, for each odd frame one forward and one
backward block motion field is computed and losslessly
encoded (Section 5). No motion fields are needed for
even frames.

5-3 lifted DWT with two motion fields coded independently
Forward and backward block motion fields are computed
independently in both directions (no collinearity) for
each even and odd frame. The motion fields are encoded
independently using a lossless encoder.

5-3 lifted DWT with two motion fields coded jointly
Similar to the case above, except that motion fields are
encoded jointly. In particular, the forward field is en-
coded as above and then used as prediction (with sign
changed) for the backward field. The resulting predic-
tion error is encoded losslessly.

5-3 lifted DWT with previous-frame inverse MF
In order to reduce the motion rate, only one motion field
is transmitted for each frame. However, since in encod-
ing two motion fields are needed, the inverse motion field
is approximated by motion field associated with the pre-
ceding frame, i.e., for a given block, backward motion
vector (inverse) is made equal to the (forward) motion
vector (with changed sign) from same-position block in
the previous frame [7].

5-3 lifted DWT with collinear inverse MF
Here, again in order to reduce the motion rate, only
one motion field is transmitted for each frame. The in-
verse motion field is recovered by assuming collinearity;
for each block, its backward motion vector is assumed
to equal its forward motion vector with opposite sign.
In a sense, a pseudo-inverse motion field is computed
during motion compensation. However, we assume that
during motion estimation the forward field is computed
without collinearity assumption. This is the case when
motion fields used for 1-3 lifted DWT are applied to the
5-3 case under collinearity assumption. The difference
between this case and the previous one above, is that

here the current forward motion field is used to compute
the backward field, while above it is the previous mo-
tion field that is used in this purpose. In principle, the
current-frame approach should perform better in case of
faster motion.

5-3 lifted DWT with optimized collinear inverse MF
Similar to the above case, except that collinearity is
taken into account not only during motion compensa-
tion, but also during motion estimation. This is imple-
mented by means of constrained block matching. The
resulting motion fields are optimal in the sense that they
achieve the best compromise between accurately com-
pensating in the forward and backward directions using
one single motion field.

5-3 lifted DWT with triangular mesh
This is the case studied extensively elsewhere [7]. Reg-
ular triangular mesh is used while mesh-node displace-
ments are estimated using hexagonal refinement [13].

5-3 lifted DWT with modified triangular mesh
Similar to the above case, except that a modified tri-
angular mesh and a new refinement algorithm are used
[11].

5. EXPERIMENTAL RESULTS

Results provided in this section are obtained using SIF-
resolution Mobile & calendar and Football sequences at
30 fps.

The block-based motion estimation is implemented
using exhaustive-search block matching at full spatial
resolution with search range of ± 8 pixels per frame
for the Mobile & calendar sequence and ± 16 pixels
per frame for the Football sequence with 1/8 pixel accu-
racy and using bicubic interpolation [14] of the original
frames. We used block size of 16 × 16 pixels, and the
squared-differences distortion metric.

The standard and modified meshes are created as
illustrated in Fig. 1. In both cases, node-point mo-
tion vectors were estimated using hierarchical hexagonal
refinement algorithm initialized with zero-motion field
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[11]. The search range and motion precision were kept
the same for all configurations. For motion estimation,
in the case of modified mesh topology, we used the strat-
egy that starts motion estimation in the center of the
frame, and progressively includes more nodes closer to
image boundaries [11].

Table 2 shows the PSNR performance for both se-
quences at the average rate of 800 kbps. We have used
an implementation of the JPEG2000 image compression
standard to code each subband obtained with two de-
composition levels of the motion-compensated 5-3 lift-
ing transform. The motion was encoded losslessly using
JPEG-LS directly on arrays of horizontal and vertical
motion components. Average overhead for motion in-
formation in our experiments ranged from 22% to 39%,
depending on motion model used. Note the slight PSNR
gain of the modified mesh over the regular mesh and a
more significant one over block motion models. How-
ever, coding gain of coder configurations utilizing mesh
comes at the price of significantly higher computational
cost of iterative hexagonal refinement motion estima-
tion. We can also notice that “collinear inverse” out-
performs “previous inverse” with gain being more sig-
nificant in the sequence with faster motion. Finally,
configuration using 1-3 lifted DWT showed very solid
coding performance (within 0.3 dB of the best PSNR
for “Mobile & Calendar”), at the lowest computational
cost.

Table 2: PSNR performance [dB] at average of 800 kbps

Configuration Mobile & calendar Football

1-3 26.29 26.57

5-3-Ind 25.99 26.64

5-3-Jnt 26.11 26.72

5-3-Prv 26.32 26.69

5-3-Col1 26.33 26.75

5-3-Col2 26.35 26.83

5-3-Msh 26.42 27.31

5-3-ModMsh 26.56 27.44

6. CONCLUSIONS

We have studied different motion models and configura-
tions in the context of lifting implemented wavelet video
coding. In our experiments, mesh-based models slightly
outperformed other configurations with the penalty of
significantly higher computational cost. In continuation
of this work we plan to perform extensive tests for va-
riety of sequences and target bit-rates in order to find
optimal motion/transform configuration.

REFERENCES

[1] W. Sweldens, “The lifting scheme: A custom-
design construction of biorthogonal wavelets,”

Appl. Comput. Harmon. Anal., vol. 3, no. 2, pp.
186–200, 1996.

[2] B. Pesquet-Popescu and V. Bottreau, “Three-
dimensional lifting schemes for motion compen-
sated video compression,” in Proc. IEEE Int. Conf.
Acoustics Speech Signal Processing, 2001, pp. 1793–
1796.

[3] A. Secker and D. Taubman, “Motion-compensated
highly scalable video compression using an adaptive
3D wavelet transform based on lifting,” in Proc.
IEEE Int. Conf. Image Processing, 2001, pp. 1029–
1032.

[4] C. Parisotand M. Antonini and M. Barlaud,
“Motion-conpensated scan based wavelet transform
for video coding,” in Tyrrhenian International
Workshop on Digital Communications, Sept. 2002.

[5] A. A. Bruekens and A. W. van den Enden, “New
networks for perfect inversion and perfect recon-
struction,” IEEE J. Sel. Areas Commun., vol. 10,
1992.

[6] H. J. Heijmans and J. Goutsias, “Nonlinear mul-
tiresolution signal decomposition schemes: Part ii:
morphological wavelets,” IEEE Trans. Image Pro-
cess., vol. 9, pp. 1897–1913, Nov. 2000.

[7] A. Secker and D. Taubman, “Lifting-based invert-
ible motion adaptive transform (LIMAT) frame-
work for highly scalable video compression,” IEEE
Trans. Image Process., 2004 (to appear).

[8] J. Konrad, “Transversal versus lifting approach
to motion-compensated temporal discrete wavelet
transform of image sequences: equivalence and
tradeoffs,” in Proc. SPIE Visual Communications
and Image Process., Jan. 2004.

[9] L. Luo, J. Li, S. Li, Z. Zhuang, and Y. Zhang, “Mo-
tion compensated lifting wavelet and its application
in video coding,” in IEEE Int. Conf. on Multimedia
and Expo, Aug. 2001.
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