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ABSTRACT

Multi-rate adaptive filters have been used in various ap-
plications with numerous advantages such as low computa-
tional load, fast convergence and build in parallelism allow-
ing efficient hardware implementation. Drawbacks when us-
ing multi-rate processing are mainly related to aliasing and
reconstruction effects. In this paper, a filter bank design
method using multi-criteria including inband aliasing, resid-
ual aliasing, magnitude and phase constraints on the total
filter bank is proposed. The analysis filter bank is first de-
signed with minimum inband aliasing and approximately lin-
ear phase in the passband. From a given analysis filter bank,
the synthesis filter bank is designed with minimum residual
aliasing between subbands while controlling the amplitude
and delay distortion level for each frequency component di-
rectly. Accurate approximations for the group delay errors
are derived for both designed problems. By employing these
approximations, the multi-criteria optimization problem can
be efficiently formulated as quadratic optimization problems.
A design example shows that the group delay approximations
are highly accurate with the group delay errors restricted to
small values.

1. INTRODUCTION

Multi-rate signal processing is gaining more and more im-
portance in a wide range of applications such as echo can-
cellation, audio coding, video coding, signal compression,
microphone array, speech enhancement and equalisation [1],
[2]. In multi-rate processing, the signal to be processed is di-
vided into subbands by using an analysis filter bank and then
decimated according to the new bandwidth of the subbands.
The decimation in combination with non-perfect filters in the
filter bank results in aliasing of the subband signals. It is pos-
sible to cancel aliasing perfectly in the synthesis filter bank
when the whole multi-rate chain is designed to yield no dis-
tortion, i.e. the total transfer function is reduced to a simple
delay. This is often referred to as the perfect reconstruction
property [3]. However, any filtering operation in the sub-
bands will cause phase and amplitude changes, thereby alter-
ing this property. Thus, there is a need to optimize both the
inband aliasing and the residual aliasing effects while con-
trolling the distortion levels in the filter bank. Furthermore,
the delay for the filter bank has a critical impact in many ap-
plications such as telephony. Consequently, it is important to
include a delay specification in the optimization problem.
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In [4], [5] an approach for the design of nearly perfect
reconstruction filter bank is presented. In [6], the aliasing
effect and the distortion are combined into a quadratic op-
timization cost and a simple quadratic programming is used
to optimize the analysis and the synthesis prototype filters.
The problem of controlling the phase and group delay for
the total filter bank is investigated in [7] and an adaptive
non-linear optimization method is used to solve the prob-
lem. That formulation, however, does not include a capabil-
ity to directly control the group delay. Thus, in this paper we
propose and derive efficient and highly accurate approxima-
tions for the group delay errors to allow exact control of the
phase and group delay. These approximations are shown to
be linear functions of the prototype filters. Consequently, ad-
ditional linear constraints are incorporated into the optimiza-
tion problem to allow approximately linear phase for the total
filter bank. The analysis and synthesis filter banks designed
using multi-criteria including inband aliasing, residual alias-
ing, magnitude and phase constraints on the total filter bank
is then proposed. These criteria can be controlled exactly de-
pending on the practical application. The analysis filter bank
is initially designed with minimum inband aliasing in con-
junction with frequency domain specification and approxi-
mately linear phase in the passband. From a given analysis
filter bank, the synthesis filter bank is designed with mini-
mum residual aliasing while constraining the distortion level
and the group delay for all the frequencies. Consequently, the
filter bank designed problems are formulated as semi-infinite
quadratic optimization problems. A design example shows
that the group delay approximations are highly accurate with
the group delay errors restricted to small values.

2. FILTER BANK STRUCTURE

Uniformly modulated filter bank (UMF) is formed by modu-
lated versions of the analysis and synthesis prototype filters.
Denote h = [(0),---,h(L,—1)]7 as impulse response of the
analysis prototype filter of length L, with the corresponding
transfer function

H(z) =hTq,(z) (1)

where @,(z) = [1,z7!,---,z=%=D]7_ For an UMF system
with M subbands, the subband analysis filters H,(z), 0 <
m < M — 1, are obtained from the prototype filter H(z) as
follows:

Hy(2) = H(zWyy) 2

where Wy = e /2™ The input signal X(z) is filtered by
the m' analysis filter H,,(z) and decimated by a factor D,
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D < M, according to

1

D—-1
Xo(e) =5 5 HEPWWHXEPWE) ()
d=0

where Wy = ¢ /2P The output from the analysis filter
bank is passed through interpolators with compressing effect

Yiu(2) = X (2"). 4)

These signals are filtered by the synthesis filter bank and
then added to form the output signal Y(z). Denote g =
[g(0),---,g(Ls — 1)]T as the impulse response of the synthe-
sis prototype filter of length L; with the corresponding trans-

fer function
Giz)=g"al2) 6))

where @ (z) = [1,z71,---,z= (5= D]7. The subband synthesis
filter is obtained from the prototype filter as G(z) as follows

Gun(2) = G (©)
The output signal can be expressed as

, Dot M=l 4
Y(z) = D2 X(ZWD) ZOH(ZWﬂWD)G(ZWﬁ)

= 3X(2) ¥ HEWG(EWE) (7)
D

m=

A direct form realization of an analysis and synthesis filter
bank is given in Fig. 1.
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Figure 1: Direct form realization for an UMF.

3. ANALYSIS FILTER BANK DESIGN

The analysis prototype filter is designed with minimum in-
band aliasing subject to frequency response constraints in the
passband. Due to the structure of UMF, it is only necessary to
optimize the inband aliasing for the 0" subband [7]. The to-
tal inband aliasing energy for all the frequencies w € [—T1, 1]
when assuming a white input signal can be given as

m

D-1 '
/ > HEEPW) Pdew. (8)
=1

-

1

Blh) =5

This inband aliasing can be expressed as a quadratic
function of the analysis prototype filter h as follows

B(h) =h'Bh ©)

where
1 Dbl 7 i0/Dyyrd jw/Dyyd
B:m;/ QPG (P W )dw  (10)
=l

and () denotes the Hermitian operation of a vector. In the
sequel, we will formulate the frequency response constraints
for the analysis prototype filter in the passband [8]. Denote
the desired frequency response of the analysis prototype filter
in the passband as

A(e/®) = /%@ v € [~ 0y, wp) (11)
where @)H(o.)) = —wiy with Ty is the desired constant group

delay and [—w),, w,] is the passband.
The analysis filter bank is constrained to the desired re-
sponse in the passband according to

|H(e/®) ~H(e")| < &,V wE [~wp, @] (12)

where & is a small specified error. Denote @, (w) and ¢@.(w)
as the real and imaginary parts of ¢,(w), respectively. As-
suming that (12) is achieved then for a small &5 we may use
the following approximations

h’ ¢ (w) ~ cos(wfy), h! @ (w)~ —sin(wiy), (13)
and
AH(w)% I, Vwe [_wpapr (14)

where 4y (w) is the magnitude response of the analysis filter
bank. Let By(w) and 15(w) denote, respectively, the phase
and the group delay of the analysis filter bank. A design
objective is to ensure that

[Ty — Tu(w)| < &nr, ¥V W E [—wy, W), (15)

where &g 1 is small. The group delay error for the analysis
filter bank each frequency w € [—w),, w,] can be given as

ep(w) = Ty—1y(w)
N (0 16
H dedo() )’ ( )

where
W g ()
¢<hftp;<w>>2+<hw;<w>>2>’ an

Using approximations (13) and (14), it can be shown that
the group delay error can be approximated to a linear func-
tion of the analysis prototype filter as

en(w) ~h!T(w), (18)

6 () = arcsin (

where I (w) is an L, x 1 vector with the n'" element, 0 < n <
L,— 1, given as:
Fo(w) = I{je /@) (—nit)}  (19)

and I{-} is the imaginary part of a complex number. The
optimization problem can then be formulated as

m}inhTBh
|H(e/®) — H(e/?)| < &n, Y € [~ Wy, W) (20)
W' (w)| < &y 1, YO € [~ Wy, @)
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Using the real rotation theorem [9], (20) can be reformulated
as a linear quadratic programming problem as follows:

rninhTBh
R{ e]co ejw) eﬂn)\} < ey, 1)
we[ Wy, W), A €0,1]

IhT (w)| < &y, YO € [~ Wy, Wy,

where R{-} denotes the real part. The problem (21) is a semi-
infinite quadratic optimization problem with respect to the
analysis prototype filter h. This problem can be solved us-
ing semi—infinite quadratic programming or the conventional
quadratic programming using discretization. In this paper,
the second method is chosen for solving (21) for its simplic-
ity. The problem is discretized by restricting wand A to finite
sets Q and A, respectively. If the unit circle, generated by
e/>™ X € [0, 1] is approximated by an octagon, the complex
error magnitude is, at worst, 0.68 dB deviation from the con-
straints [9]. With the octagon approximation, (21) becomes a
finite quadratic programming problem, which can be solved
efficiently by using the standard simplex algorithm.

4. SYNTHESIS FILTER BANK DESIGN

Given an analysis prototype filter designed in Section 3, the
synthesis prototype filter is optimized with minimum resid-
ual aliasing in conjunction with constraints on the total dis-
tortion of the filter bank. Since the first term in (7) can be
viewed as the transfer function that filters the original input
signal, the total transfer function for the filter bank is given
as

1 M—1
S HEWGEW) =

m=0

h'W()g,  (22)

where W(z) = %Z%;ol QW) QL (zW). For 1 <n <L,
and 1 <ny < Ly, the (n,n1) element of matrix W(e/?) is given
as

. M-1 _

Wy (e/?) = Zo(ef"“‘Wﬁ)*("*U(erWﬁ)f(nlfl)
—2,M) #0

—2,M)=0,

0, if mod(n + m;
- %e’-’“’“’*"l -2), ifmod(n+n,
(23)

where “mod” denotes the modulus after the division.

In the following, we will formulate the constraints for
the total filter bank transfer function. Let A7 (w), Br(w)
and T7(w) denote, respectively, the magnitude response, the
phase and the group delay of the total filter bank with the
transfer function 7 (e/?). Moreover, denote the desired fre-
quency response of the filter bank as

Ty(e/®) = /%@ v e [~ (24)

where 87 (w) = —wf7 and 7 is the desired group delay. The
total response of the filter bank is constrained to the desired
response according to

T (e/®) — Ty(e/®)| < &r, Vw € [~m, 7] (25)
where €7 is a small specified error. By extending the group
delay error approximation for the analysis filter bank in Sec-
tion 3 to the total analysis and synthesis filter bank, the group

delay error for the total filter bank at each frequency w,
er(w) = Tr—17(w),Vwe|[-mm. (26)
can be approximated as
er(w) ~ 1{T1 (e/9)e10r(@) | (/)= 70r(®) fT} 27)
where
Ti(e*) =h"=(w)g (28)

and =(w) is an L, x Ly matrix. For 1 <n <L, and 1 <n; <
Ly, the (n,n;) element of =(w) is given as:

_ 0, ifmod(n+n; —2,M)#0
Znn (@) = 9 ZjMOrm =2) - jeo(nny —2)
D
Thus, the group delay error can be approximated as a lin-
ear function of the synthesis prototype filter g,
er(w) = Er(w)g (30)

29)

, otherwise.

where
Er(w)=h1 {z(w)eﬂ‘éﬂ‘*’) 1 jW(e/@)e /0@ fr} .
(31
For 1 < d < D—1, the second term in (7) can be viewed
as the transfer function which contributes to the aliasing
terms in the output signal. Thus, the objective is to mini-

mize the total residual aliasing energy for all the frequencies
w € [—m, 1, given by

Tp—1M—1

Vg) = 555 / 3 3 WO eldo ()

where

®,,4(e/?) = Qu(/WIWE) @ (/“Wif) (33)

and (-)7 denotes the transpose operation of a vector. This
aliasing can be reduced to a quadratic function of g as fol-

lows
y(g) =g"Pu(h)g (34)
where
D—1M-1
P.(h 2n:D Z Z/ O/ (/)W h! B,y 4(e/®)dw
(35)

and (-)* denote the conjugate operations of a vector.

The design of the synthesis filter bank can be posed as:
Minimize the residual aliasing (32) subject to constraints on
the total response of the filter bank (25) and constraints on
the group delay error (30). This optimization problem can
be formulated in terms of the synthesis prototype filter as
follows,

ming”P,(h)g

g A
[h"W(e/?)g —e /97| < gr,
|Er(w)g| < érr,

By ensuring that |Er(w)g| < &r¢ for all w, the group
delay error is constrained for all the frequencies within a
maximum error of €7 ;. Using the real rotation theorem [9],
(36) can be reduced to a semi-infinite quadratic optimization
problem, which can be solved efficiently by using the dis-
cretization method.

Vwe[-mmn (36)
Vwe[-mmn.
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5. DESIGN EXAMPLE

Consider the design of a filter bank with M = 16 subbands.
The decimation factor is chosen as D = M/2. The length of
the analysis and synthesis prototype filters is L, = Ly = 4M.
The desired delay for the total filter bank equals to half of the
length of the prototype filter, 77 = L,/2. The delay for the
analysis prototype filter is Ty = 17/2.

The analysis filter bank is designed according to (21)
with minimum inband aliasing subject to frequency response
constraints and linear phase approximation in the passband.
Fig. 2 plots the frequency response of the analysis prototype
filter with the stopband frequency ), = 17/M. The constraint
for the passband is & = 0.01 while the group delay con-
straint for the analysis filter bank is &z = 0.01. It can be
seen from the figure that the group delay error approxima-
tion for the analysis prototype filter is highly accurate with
the group delay error less than & 7.

Frequency respose [dB]

I I I I I I I I I
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized frequency

0.01

0.005

Group delay error
)

-0.005

I I I I I I I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Normalized frequency

-0.01

Figure 2: Frequency response and group delay error of the
analysis prototype filter.

The constraint on the group delay error for the total filter
bank is reduced to a smaller error £7,; = 0.001 while the con-
straints on the transfer function of the filter bank is €7 = 0.01.
The synthesis filter bank is then designed according to (36).
The frequency response error and the total group delay error
is plotted in Fig. 3. It can be seen that the group delay error
approximation is highly accurate with the group delay error
smaller than a desired value at all the frequencies. Thus, by
using the proposed design method, the analysis and synthesis
prototype filters can be designed accordingly using multiple
criteria depending on the practical applications.

6. CONCLUSIONS

In this paper, a formulation for the design of filter bank is
proposed for the analysis and synthesis prototype filter with
multiple criteria. Accurate approximations for the group de-
lay errors are derived to allow the analysis filter bank having
approximately linear phase in the passband while the total
filter bank having approximately linear phase at all the fre-
quency components. By employing these approximations,
the multi-criteria optimization problems can be reduced to
quadratic optimization problems. A design example shows

-39.95

-40.05

Filter bank distortion [dB]

I I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized frequency

Group delay error

2 I I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized frequency

Figure 3: Distortion and group delay error for the total filter
bank.

that the group delay error approximations are highly accu-
rate with the group delays restricted to small errors.
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