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ABSTRACT

We address the problem of signal separation using space-time blind
equalization techniques. A novel blind algorithm, denoted ACMA
(Accelerated Constant Modulus Algorithm), is proposed. It mini-
mizes the constant modulus cost function and is based on a tuner
used in adaptive control that sets the second derivative (“acceler-
ation”) of the coefficient estimates. Both the convergence speed
and computational complexity of Multiuser ACMA lie between
those of the Multiuser Constant Modulus and the Multiuser Shalvi-
Weinstein algorithms. Some preliminary results show that the pro-
posed algorithm presents a robust behavior with respect to global
minima and tracking capability.

1. INTRODUCTION

Nowadays, efficient equalizers have had an important role in mo-
bile communications. A typical problem that frequently arises in
multiuser communication systems is the blind separation of lin-
ear mixtures of signals. In this context, several different algo-
rithms have been proposed. The Multiuser Constant Modulus Al-
gorithm (MU-CMA) [1] and the Multiuser Shalvi-Weinstein Algo-
rithm (MU-SWA) [2] are based on a stochastic gradient approach.
They present an unfavourable compromise between convergence
speed and computational complexity. Recently the Quasi-Newton
Cross-Correlation Constant Modulus Algorithm was proposed in
[3]. Compared to MU-CMA, it presents faster convergence rate,
but higher complexity. Moreover, it is subject to numerical insta-
bility [3, 2]. In this scenario, designing a stable algorithm which
has a more favorable compromise between efficient behavior and
computational complexity is a problem of interest.

A discrete-time adaptive filtering algorithm was introduced in
[4] and further analyzed in [5]. It was derived from a continuous-
time tuner used in adaptive control, which sets the second derivative
(“acceleration”) of the coefficient estimates [6]. For this reason the
discrete-time algorithm was named the Accelerating Adaptive Fil-
tering (AAF) algorithm. At the cost of a moderate increase in com-
putational complexity, this algorithm shows some advantages when
compared to the LMS (Least Mean Squares) and NLMS (Normal-
ized LMS) algorithms. In [4] it was shown that, for colored in-
put signals, AAF presents a more favorable compromise between
convergence speed and steady-state estimation error than LMS or
NLMS.

Inspired on the general methodology for the design of blind
adaptive algorithms proposed in [7], we derive an algorithm for
space-time blind equalization based on the AAF algorithm. Since
AAF compares favorably to LMS, one may expect that the resulted
algorithm would achieve better performance than MU-CMA.

In the next section problem formulation is presented and space-
time blind algorithms are revisited. This is followed by a sum-
mary of the continuous-time accelerating tuner and the associated
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Multiuser Accelerated Constant Modulus Algorithm (MU-ACMA).
Then we show simulation results comparing the convergence and
tracking behavior of ACMA, CMA and SWA for SISO (single-input
single-output) and MIMO (multiple-input multiple-output) systems.
A conclusion section closes the paper.

2. ISSUES ON SPACE-TIME BLIND EQUALIZATION

Let a MIMO system with N sources and with an antenna array
which has L > N sensors as depicted in Fig. 1. The source se-
quences a;(n), i = 1,...,N are assumed i.i.d., independent from
one another, non Gaussian, and zero-mean. The transmitted sig-
nals suffer inter-symbol and co-channel interferences. The channel
from the i source to the j™ sensor is modelled by an FIR filter
with K, coefficients and 7;, i = 1,2,...,L represent additive white
Gaussian noise. The outputs of the L sensors are processed with N
parallel space-time FIR equalizers, each with K, time diversity and
M = LK, taps. The blind equalizer must mitigate the channel effects
without the data training. The i equalizer’s output can be written
as y;(n) = w] (n— 1)u(n), where u(n) and w;(n — 1) are the input
and the weight equalizer vectors, respectively.

’1(&) channel r*\’h (n) () equalizer
U

a,(n) —— ()
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Figure 1: MIMO equivalent system model.

In the case of joint blind simultaneous recovery of all input sig-
nals, the Godard cost function is given by [1]

N é N 5] )
Jo=Y eits L X Iry(d) 1)
i=1 j=1,j#i 8=—8,

in which Jg, = E{(|y;(n)|* = R$)*}. RS = E{la(n)|*} /E{|a(n) *}.
r,;(8) =E{y;(n)yj(n—6)}, 8, = K; + K. — 1, and * stands for com-
plex conjugate. Note that the sources are assumed with the same
statistics. The second term of the right side of (1) is introduced
to penalize the cross-correlations between different users through
weight £ /2 [1]. The gradient vector of this cost function related to

the i user is given by

N 61
V.J;=E{e;,(n)u*(n)} + %;ﬁé;?{yj(n)u* (n)}rij(S) (2)
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where ei(") = (b’,(")\ —R‘é)yi(n) 3

It is usual to estimate the cross-correlation r;;(§) with an exponen-
tial window, considering a forgetting factor A, and the other expec-
tations with instantaneous estimates [1, 3]. With these estimates,
“stochastic gradient algorithms” can be characterized by the fol-
lowing equations

w,(n) =w;(n—1)— pu(n)é;(n)u*(n) 4)
in which
¢;(n) =¢;(n)+p;(n) and ®)
£ gy
p;(n) = 2 Z Yj(")?ij(5)~ (6)
Jj=1,j#i §=—8,

In MU-CMA [1], the adaptation step is a constant scalar ((n) = U.
In MU-SWA, u(n) = —y 'R~!(n), being R(n) an estimate of
the autocorrelation matrix E{u’ (n)u*(n)}, y = R — BE{|a(n)|*},
and B = 2(= 3) in the complex (real) case. This algorithm was
recently proposed in [2] as an approximation of the higher-order
cumulant-based algorithm [8] with capacity to simultaneously re-
cover all source sequences and can be interpreted as an extension of
SWA [9] for the multiuser environment. It is possible to adjust the
parameters of MU-SWA and MU-CMA to reach the same steady-
state mean-square error (MSE) by using [2]

p=—(1-1)/(yo;) )

where G2 is the variance of the input signal and A the forgetting
factor used to recursively update the estimate R~ (n).

3. THE ACCELERATING TUNER

In adaptive control and recursive coefficient estimation one often
needs to adjust recursively an estimate w(z) of a coefficient vector
W, using a measured signal d(t) = u’ (t)w, + 1(¢), where u(r) is
the input signal vector and 1) (¢) the measurement noise. The goal is
to maintain both the estimation error €(r) = u’ (1)w(s) —d(r) and
the coefficient error w () = w(t) — w, as small as possible.

The most straightforward tuning method used in adaptive con-
trol sets the first derivative (“velocity”) of the coefficient estimates
proportional to the estimation error:

Ww(r) = ~Mu* (1)e(1) (®)
g(t) =u'(t)w(r) —d(t) ©
where M is a positive-definite matrix of dimensions M x M.

A tuner that adjusts the second derivative (“‘acceleration”) of
the coefficient estimates was introduced in [6]. Observing that

w(t) = Ww(r) and defining q() = w(t), the accelerating tuner can
be described as follows:

w(t) =q(t) (10)
q(t) = —Mu"(r)e(r)

—2M (M, +u*(r)u’ ()M, M;) q(7) (11
e(t) =u'(t)w(t) —d(r) (12)

where the M x M symmetric matrices M, k = 1,2,3 are positive-
definite. If measurement noise is absent we can write d(f) =
u’(t)w, and £(t) = u”(r)w(¢). In this case the dynamics of the
accelerating tuner can be described by using the coefficient error
vector w(?):

)-8 L[5 ) v
v(e) A(r) V()
A, =-Mu*(t)u’(r)

A22 = _2M1 (M2 +U*(t)ur(t)M1M3) .

Sufficient conditions to ensure stability of this system, established
by a Lyapunov function defined in [6], are

4M,M;M,M, >1 and (13)
M, M, M, +M,M;M, > M; /2. (14)

Among different methods to obtain a discrete-time algorithm
from a continuous-time one, the direct and reverse Euler meth-
ods are the simplest. Considering the first order differential equa-
tion f(¢) = g(¢), its discrete-time version according to direct Euler
method is f(n+1) = f(n) 4+ Tg(n) and to reverse Euler method is
f(n)= f(n—1)+Tg(n), where T is the integration constant. It is
relevant to note that the popular LMS algorithm can be obtained by
applying direct Euler method to discretize the previously “velocity”
tuner making M = p,I and u = u,7T.

The AAF algorithm was obtained [4] using (10)-(12) by Eu-
ler’s reverse method. The reasons for this choice are quite simple:
the direct Euler method results in a low complexity algorithm that
may be unstable; other numerical integration methods like the trape-
zoidal rule result in algorithms with higher computational complex-
ity. Thus, we also use Euler’s reverse method to derive ACMA in
the next section.

4. ACCELERATED BLIND ALGORITHMS

Replacing (9) by a nonlinear version based on the Godard cost func-
tion [10], i.e.

e(t) = @(ve(t)) = (Iye(t)* — RS)ye(r) (15)

being y.(t) = u’ (r)w(r) and applying the direct Euler method to
discretize (8) and (15) by setting M = po,I and yu = y,7, we obtain
the well-known Constant Modulus Algorithm.

Now suppose that we wish to extract only the i source and
that the co-channel interference is absent, which is equivalent to
the SISO case. ACMA is obtained by applying the reverse Euler
method to (10), (11) and (15) with the integration step u and the a
priori error (3). Moreover, by using a linear approximation of ¢(-)
and making M, =m, I, k=1,2,3, being m, positive constants and I
the identity matrix, we obtain the low complexity version of ACMA
of Table 1. Note that a, 1/, um, a, 2,um%m3 and uzml need to
be computed only once. A detailed derivation of this algorithm is
shown in Appendix.

Initialize the algorithm by setting:
RS =E{la(n)[*} /E{la(n)|*}
wi(0)=[0 -+ 0 10-- 0, q0)=0
o=1+2umm,
B =2 (=3) for the complex (real) case
For each instant of time, n = 1,2, - - -, compute:
yi(n) =’ (n)w;(n—1)
ei(n) = (Iy;(n)|> = R3)y;(n)
bi(n) = 2pmimy + u>my (Bly;(n)|* — RS)

b;(n)u” (n)q;(n— 1) + um, cee;(n)
c;(n) = 5

o +b;(n) [u(n)]|

q;(n) = 2 [a;(n = 1) =¢;(m)u* ()]
w;(n) = w;(n—1)+pq;(n)

Table 1: Summary of ACMA.

The first problem we face when using ACMA is how to choose
the parameters y, m,, m,, and m; to obtain adequate performance.
Motivated by the fact that the AAF algorithm is stable and reaches
its fastest convergence at the upper bound of (13) [5] we introduce a
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parameter k to set m;m, = 1/(2x) and m m, = «/2. This guaran-

tees 4m%m2m3 = 1. Consequently, we need to set three positive pa-
rameters, i, kK and m , to adjust the performance of ACMA. How-
ever, our experience indicates that this is not a critical matter. Simu-
lations results suggest that by choosing m| ~ 0.15 and k = 100, we
should vary the step size [ in the interval ]0, 1] to obtain adequate
algorithm performance.

Now considering the simultaneous recovery of all sources in
presence of co-channel interference, MU-ACMA can be obtained
by replacing e;(n) in Table 1 by &;(n) defined in (5).

Table 2 shows the computational complexity of the algorithms
for real signals. MU-ACMA has a computational complexity that
lies between those of MU-CMA and MU-SWA, maintaining the
proportionality to M operations per iteration.

Op. MU-SWA MU-ACMA | MU-CMA
X AM*+M(2N+ M(5N+1)+ M(2N)+
+1)+N(3D+5) N(3D+8) +N(3D+5)
- 1 N —

Table 2: Computational complexity of the algorithms for real sig-
nals, D=(N—1)(28,+1), N > 2.

5. SIMULATION RESULTS

In this section we compare the performance of ACMA to CMA and
SWA, presenting results for the SISO and MIMO cases. The algo-
rithms are adjusted to reach the same steady-state MSE using (7)
for CMA and SWA and an experimental inspection for ACMA.

The contour plot of the SISO Godard cost function for the chan-
nel H(z) = [1+0.6z~']~! is shown in Fig. 2. This figure shows two
local and two global minima of the cost function and different tra-
jectories of CMA, SWA and ACMA. If initialized at w(0) = [0 1]”
the algorithms present similar behavior. For w(0) = [-0.4 0.05]",
which is close to one of the local minima, ACMA crosses the lo-
cal minimum and reaches one of the global minima while CMA
and SWA stagnate at the local minimum. If the pole of the channel
is changed from —0.6 to —0.2, the local minima become more pro-
nounced. In this case ACMA shows the same behavior of CMA and
SWA, being attracted to the local minima. This behavior suggests
that, to some extent, ACMA has the ability to escape from soft local
minima. For w(0) = [0.2 —0.4]" ACMA reaches one of the global
minima crossing the attraction domain of a local minimum while
CMA and SWA converge to the other global minimum. In this case,
ACMA follows the “rocky trail” while the others converge straight
to a valley. While successfully avoiding a local minimum, ACMA
shows a slower convergence rate. If the pole of the channel is again
changed from —0.6 to —0.2, the three algorithms present similar
behavior, converging to the same global minimum. Although the
results of Fig. 2 are very interesting, we can conclude that ACMA
does not avoid deep local minima.

We now consider a MIMO system with N = 2 users, L =3
sensors and time-varying channels H;;(z) = hg(n) + h’ij(n)z’1 +
hgj(n)z_z, i=1,....,N, j=1,...,L, whose coefficients are gener-
ated by passing Gaussian white noise through a second order But-
terworth filter designed to simulate a fade rate of 0.1 Hz [11]. More-
over, it is assumed 2-PAM modulation, SNR=30 dB, and 2 equaliz-
ers with 15 taps initialized with only two non-null elements at fifth
and seventh positions respectively. Fig. 3 shows the equalizer-1’s
output error for MU-CMA, MU-ACMA, and MU-SWA. The error
bursts can be associated with rapid changes of the channels’ roots
and deep spectral nulls. MU-SWA shows the faster convergence
followed by MU-ACMA. In this case, MU-CMA shows the worst
tracking capability. The corresponding residual interference (RI)
curves are presented in Fig. 3-d. Note that the error bursts occur
when the residual interference is above -10 dB. For the equalizer-2
the algorithms show similar behavior to the observed one in Fig. 3.

Figure 2: Contour of Godard cost function for 2-PAM related to
the channel H(z) = [1+0.6z7']~! and trajectories of CMA (u =
0.0016), SWA (A = 0.995), and ACMA (i = 0.16, m; = 0.1592,
K = 106) initialized at points w(0) = [0 1]”, w(0) = [-0.4 0.05],
and w(0) =[0.2 —0.4]".
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Figure 3: Output errors and RI curves for equalizer-1 using MU-
CMA (u = 0.005, & = 4), MU-ACMA (u = 0.5, m; =0.15, k =
100, & =4), and MU-SWA (A = 0.995, & =4). For 2-PAM, N =2,
L =3, M =15, SNR=30 dB, and time-varying channels.

6. CONCLUSIONS

We propose a novel Constant Modulus Algorithm for space-time
blind equalization. It is based on the general methodology for the
design of blind algorithms [7] and on the accelerating tuner [4].

In [5] an MSE analysis was presented and the stability domain
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for the AAF algorithm was established. Since J; is a nonquadratic
function, a direct extension of this MSE analysis to MU-ACMA is
not a trivial matter. On the other hand, the stability domain of the
AAF algorithm was directly extended to MU-ACMA. By means
of simulations, MU-ACMA presents adequate behavior in that do-
main, avoiding instability problems. However, a theoretical analysis
is required.

Recently tracking analysis for some blind algorithms was pre-
sented considering the energy conservation relation [12]. These
results do not include algorithms of the form of ACMA and their
extension is an open problem.

In spite of the lack of theoretical results, simulations show the
good behavior of MU-ACMA compared to MU-CMA and MU-
SWA in terms of tracking capability and computational complexity.
Moreover, it was verified that it may avoid soft local minima.

APPENDIX - DERIVATION OF ACMA

Replacing (12) by a nonlinear version for the i user

&(1) = p(u” (w,(1)) (16)
. e do(uw) 7 2
with @( - ) satisfying ——5—" = g (u” w;) u, where 5% stands for

derivation with respect to the complex vector w;, and g( - ) is a scalar
function. Thus, a linear approximation of ¢( - ) may be written as

p(u’w,) ~ p(u’wf) +g(u" wiu' (w,—wP). (17

Applying Euler’s reverse rule to expressions (10), (11), and (16)
we obtain

w;(n) =w;(n—1)+ pq;(n) (18)

o (n) = a,(n—1) = M, {u* (n)e; (n) +
+2(M2+u*(n)uT(n)M1M3)qi(n)} (19)

g(n) = ¢(u’ (n)w;(n)) (20)

where U is the integration step. These equations do not make the
update of w;(n) and q;(n) possible. To overcome this obstacle we
introduce an a priori error

e,(n) = (p(uT (nyw;(n— 1)) = (p(yi(n)). 2n

The functions ¢(-) and g(-) can be chosen based on the “instanta-
neous version” of the Godard cost functions [10]:

W;(n) = Iy (m) > = RS)*. 22)

1
26-1)

Calculating the gradient vector of this function with respect to w;
results

V¥(n) = (ly;(n) > = R§)y;(n)u*(n) = @ (y;(n)) u*(n) and (23)

90um) _ g1y (P RS un) = g, )uln). 24y

ow;
With these assumptions, (21) can be rewritten as
¢i(n) = (ly;(n)|* = R8)y, (n). (25)
It is relevant to note from (18) that
T(myw;(n—1) + pu’ (nqy(n).  (26)

By means of (26) and (17) the a posteriori error g;(n) can be com-
puted from the a priori error e;(n) as follows:

u’ (n)w,(n) =u

g(n) = ¢(u’ (nyw;(n—1) + pu’ (n)q(n))
~ 0(y;(n)) + pg (v;(n)) u” (n)q;(n)
= e,’(”) +N(ﬁ‘yi(”)|2 —Rg)uT(n)qi(n). 27

Using (27) and (19) we obtain an update expression:

q;(n)=G;! (q;(n—1) — uM;u*(n)e,(n)) (28)
Gy =T+ 12 (Bly,(n)]? — M, (n)u” (n) +
+2uM, (M, +u*(n)u’ (n)M; Mj).

It can be shown that the inverse of matrix G; is given by

G'l=A

1

B M, u* (n)uT(n)Bi(n)MI1 wi
{I 15 u? ()B, ()u* (1) } th

A= (1+2uM,;M,) " and

B,(n) = { (Bl (m) >~ RS 1+2M, M | AM, .

Replacing this result into (28), making M, =m, I, k=1, 2, 3, with
m, being positive constants, we obtain the version of ACMA shown
in Table 1.
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