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ABSTRACT

This paper presents a new extension to the variable duration Hid-
den Markov model, capable of classifying musical pattens that have
been extracted from raw audio data, into a set predefined classes.
Each musical pattern is converted into a sequence of music inter-
vals by means of a fundamental frequency tracking procedure and
it is subsequently given as input to a set of variable duration Hidden
Markov models. Each of these models has been trained to recognize
patterns of the respective predefined class. Classification is deter-
mined based on the highest recognition probability. This new type
of variable duration Hidden Markov model provides increased clas-
sification accuracy because a) it deals effectively with errors orig-
inating during the feature extraction stage and b) it accounts for
variations due to the expressive performance of instrument players.
To demonstrate its effectiveness, the novel classification scheme has
been employed in the context of Greek traditional music, to mono-
phonic musical patterns of a popular instrument, the Greek Tradi-
tional clarinet. The classification results demonstrate that the new
approach outperforms previous work based on conventional Hidden
Markov models.

1. INTRODUCTION

Algorithms for the effective comparison of musical patterns have
gained increased interest in recent years due to their use in content-
based music retrieval applications, including query-by-humming
and repeating pattern finding systems. Most research efforts so far,
have mainly concentrated on comparing MIDI signals [1], which
can be a severe limitation for a large number of real world problems
involving raw audio signals.

This paper provides a solution to the problem of matching an
unknown monophonic musical pattern that has been extracted from
raw audio data, against a set of predefined musical patterns, each of
which is represented by a variable duration Hidden Markov model
(HMM) [2]. The novelty of the approach lies in the fact that a new
modified Viterbi algorithm [3], [4] is proposed for the calculation
of the recognition probability generated by each variable duration
HMM. This algorithm provides increased recognition performance
compared to previous work [5], that was based on standard HMMs,
while reducing the required number of states per HMM. The mod-
ified Viterbi algorithm provides a solution for the classification of
instances of a musical pattern that deviate from a prototype pattern,
due to errors arising in the feature extraction stage and due to the
performance variations of the instrument players. These errors are
very common in practice. A training algorithm for the HMMs is
also introduced, in the light of the new modified Viterbi algorithm
and a methodology for the construction of the HMMs is also pre-
sented. The use of variable duration HMMs permits to circumvent a
major weakness of conventional HMMs, i.e., the modeling of state
duration.

Section 2 describes the feature extraction stage, which extracts
a sequence of music intervals from the raw audio data, by means of a
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fundamental frequency tracking algorithm followed by a quantizer.
Section 3 presents the modified Viterbi algorithm for the calcula-
tion of the recognition probabilities, along with the training algo-
rithm and the methodology for building the HMMs. A case study
involving the application of the proposed scheme in the context of
Greek Traditional music is presented in section 5. The last section
presents our conclusions and future research priorities.

2. FEATURE EXTRACTION

The goal of the feature extraction stage is to provide a time-
frequency representation of the unknown musical pattern, to be
used as input to a set of variable duration HMMs. At a first step,
a sequence of fundamental frequencies is extracted from the un-
known musical pattern. For this task, any robust fundamental fre-
quency tracking algorithm can be employed, like [7], [8], [9]. Let
F = { f1, f2, . . . , fM} be the sequence of extracted fundamentals,
where M is the number of frames that the signal is split into, by
means of a moving window technique. During this step, a number
of errors are likely to occur. Such is the case when a transition be-
tween notes takes place. We chose not to apply any heuristic rules
to reduce the number of errors, but rather treat these errors directly
by the variable duration HMMs.

At a second step, in order to imitate certain aspects of the human
auditory system, which is known to analyze an audio pattern on a
logarithmic frequency axis, each fi is mapped to a positive number,
say k, equal to the distance (measured in quarter-tone units) of fi
from f0 (the lowest fundamental frequency of interest), i.e., k =

round(24log2
fi
f0

), where round(.) denotes the roundoff operation.
As a result, sequence F is mapped to sequence L = {li, i = 1 . . .M},
where li lies in the range 0 to some maximum value, say lmax.

It is now straightforward to compute D, the sequence of mu-
sic intervals (frequency jumps), from the sequence L. This is
achieved by calculating the difference of sequence L, i.e., D =
{di = li+1 − li, i = 1 . . .M − 1}. Most of the time li+1 is equal to
li because each note in a musical pattern is likely to span more than
one consecutive frames. As a result, di = 0 for most of the frames
(i’s). By calculating differences, we deal with the fact that instances
of the same musical type may have different starting frequencies.
We assume that the di’s fall in the range of −G to G, where G is the
maximum allowed music interval. This feature extraction scheme
has also been used in [6].

3. THE VARIABLE DURATION HMM

Let us first rewrite sequence D as

D = {0z1 ,m1,0z2 ,m2, . . . ,0zN−1 ,mN−1,0zN}

where 0zk stands for zk successive zeros (i.e., zero valued di’s) and
each mi is a non-zero di. This alternative representation reveals
the fact that sequence D can be considered as consisting of subse-
quences of zeros separated by positive values (the mi’s), with each
mi denoting a music interval, i.e. the beginning of a new note. The
physical meaning of a subsequence of zeros is that it represents a
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Figure 1: A discrete observation HMM that models instances of the
same musical pattern, in the ideal case

steady musical note. The length of the subsequence, measured in
frames is actually the duration of the note. In the ideal case, 0z1

corresponds to the first note perceived by the human ear, m1 is the
music interval equal to the difference (measured in quarter tones)
of the first two notes, 0z2 corresponds to the second note and so on,
until mN−1 is reached, corresponding to the last music interval, fol-
lowed by 0zN , the duration of the Nth (i.e. last) note perceived by
the human ear.

3.1 The ideal case

In the ideal case, instances of the same musical pattern should only
differ in the number of zeros separating the mi’s. The HMM cho-
sen to model each pattern, follows the above structure of the feature
sequence. That is, each note expected to be in the pattern, corre-
sponds to a number of states, namely a non-zero state followed by
a zero-state, with the exception, of course, of the first note. Each
subsequence 0zk can be emitted by a specific state of the HMM and
each mi is assigned to a state of each own (figure 1). As a result,
for a pattern consisting of a sequence of N notes, the respective
HMM consists of S = N + N − 1 = 2N − 1 states. For notational
purposes, the HMM states corresponding to the zero valued subse-
quences are named Z-states, Z1 . . . ,ZN and the states corresponding
to mi’s are the S-states, S1, . . . ,SN−1 (figure 1). The reason differ-
ent zero-states are used, is that this allows a different state duration
model to be adopted for each state, something that is dictated by the
nature of our signals.

Translated in the HMM terminology, let H = {π,A,B} be the
resulting HMM, where ASxS is the state transition matrix, B(2G+1)xS
is the symbol probability matrix (G is the maximum allowed music
interval), and πSx1 is the vector of initial probabilities. For the mo-
ment we assume that Z1 is always the first state, therefore π(1) = 1
and π(i) = 0, i = 2 . . .S.

For the ideal case, each Z-state can only emit zeros and each
S-state can only emit the respective mi. Therefore, there is only one
positive element at each column of matrix B with a value equal to
one.

So far, we have made no effort to model explicitly the time
duration of each state, which is also the major weakness of conven-
tional HMMs. In order to circumvent this weakness, we resort to
the so-called variable duration HMM which is capable of modeling
explicitly the time spent at each state, i.e., the expected number of
symbols emitted by each state. We assume that for each Z-state,
duration is modeled by a single gaussian probability distribution,
pZi(τ) = G (τ,µZi ,σ2

Zi
), where 1 ≤ τ ≤ T , T being a constant. The

values of T , µZi and σZi can be chosen to reflect the amount of per-
mitted time warping. Since the S-states can only emit one symbol at
a time, we can assume for the time being, that the respective gaus-
sian distributions have a mean value equal to 1 and small σ values.

3.2 Deviations from the ideal case - The need for a modified
Viterbi algorithm

In practice, N, the number of extracted notes, is rarely equal to the
number of notes perceived by a human listener, mainly due to errors
in the feature extraction stage. For example, let us consider the con-
tour plot of the spectrogram of a musical pattern played by a wind
instrument, the clarinet, as shown in figure 2. This pattern consists
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Figure 2: Contour plot of the spectrogram of a musical pattern
played by Greek Traditional clarinet
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Figure 3: Quantized fundamental frequencies corresponding to the
musical pattern of figure 2, having employed Brown’s narrowed au-
tocorrelation method.

of five notes and assuming a quarter-tone resolution is adopted (as
is the case for the signals that we studied), the D sequence for this
pattern possesses the structure

D = {0z1 ,−2,0z2 ,−4, . . . ,0z3 ,−4,0z4 ,4,0z5}

where 0zk
, k=1. . . 5, depends on the length of the moving win-

dow and the overlap between successive frames. Figure 3 shows
the fundamental frequency tracking results after quantization has
taken place, having used Brown’s narrowed autocorrelation fun-
damental frequency tracker. It can be seen that the extracted
symbol sequence Dt deviates from what is expected and has
the structure Dt = {0z1 ,1,0z2 ,−1,0z3 ,−2,0z4 ,−3,0z5 ,−1,0z6 −
4,0z7 ,4,0z8 ,−1,0z9 ,1,0z10}. If Dt is given as input to an HMM
that was built following the ideal case, a zero recognition probabil-
ity would occur, which is clearly undesirable.

On the other hand, careful observation reveals that m1, which
is equal to 1 and m2, which is equal to −1, cancel out and so do
m8 and m9. In addition, m4 + m5 = −4 which is the music interval
actually perceived by the human ear. Previous work by the authors
[5] has made an effort to categorize such deviations from the ideal
case. Three broad categories were discerned:
• (a) subsequences of the form {+1,0zk − 1} or {−1,0zk + 1}

where +1 and -1 cancel out. In the more general case {+g,0zk −

1282



g} or {−g,0zk +g}, where +g and −g cancel out, as is the case
with pitch doubling and pitch halving errors.

• (b) subsequences of the form

{ml ,0zl+1 ,ml+1,0zl+2 ,ml+2, . . .0zl+k ,ml+k}

where ∑l+k
l mi a music interval perceived by the human ear.

• (c) combinations of the above two cases
Other deviations can also be identified due to different performing
styles of the instrument players.
In [5], the authors have dealt with the above deviations by adding
states to a standard HMM following a strict modeling approach.
This gave satisfactory recognition accuracy, at the expense of a sig-
nificant increase in the number of states of the model.

In this paper a different approach is adopted. Instead of increas-
ing the number of states, we focus on the Viterbi algorithm that finds
the single best state sequence, Q = q1q2 . . .qr, for the given observa-
tion sequence D = {d1d2 . . .dM} in a variable duration HMM H .
Let us define the forward variable at( j) as ([2])

at( j) = P(d1d2 . . .dt , state j ends at t|H ), j = 1 . . .S (1)

at( j) stands for the probability that the model finds itself in the j-th
state after the first t symbols have been emitted. It can be proved
that ([2], [3])

at( j) = max
1≤τ≤T,1≤i≤S,i6= j

[δt(i,τ, j)] (2)

δt(i,τ, j) = at−τ (i)Ai j p j(τ)
t

∏
s=t−τ+1

B j(ds) (3)

where τ is the time duration variable, T is its maximum allowable
value within any state, S is the total number of states, A is the state
transition matrix, p j is the duration probability distribution at state
j and B is the symbol probability matrix. The overall recognition
probability p∗ is computed from

p∗ = max
1≤ j≤S

aM( j)

assuming a symbol sequence of length M. Equations (2) and (3)
suggest that there exist (SxT − T ) candidate arguments δt(i,τ, j)
for the maximization of each quantity at( j). In order to retrieve the
best state sequence, i.e., for backtracking purposes, the state that
corresponds to the argument that maximizes equation (2) has to be
stored in a two-dimensional array ψ , as ψ( j, t).
Therefore,

ψ( j, t) = argmax[δt(i,τ, j)],1 ≤ τ ≤ T,1 ≤ i ≤ S, i 6= j

In addition, the number of symbols actually spent on state j is stored
in a two-dimensional matrix c, as c( j, t).

3.3 The modification to the computation of the best state se-
quence

Let us know return to the deviations of type (a) and without loss of
generality, let us focus on deviations of the form {+1,0zk −1}. As
it was previously stated, +1 and −1 are not real music intervals and
if they were canceled out by summation, the resulting subsequence
would consist entirely of zeros, i.e., would be of the form 0zk+2.
This suggests that if, in the original D sequence, {+1,0zk −1} was
replaced by 0zk+2 the resulting D̂ sequence would give a non-zero
recognition probability, whereas D would result in a zero probabil-
ity. Therefore, for the Z-states, it is desirable to modify equations
(2) and (3), so as to reflect the need to be able to check for sub-
sequences that contain symbols that can be canceled out. We no-
tice that in equation (2), each candidate argument refers to τ sym-
bols of the observation sequence and this is why the product in (3)
∏t

s=t−τ+1 B j(ds), is calculated. If the value of ∑t
s=t−τ+1 ds is equal

to zero, this indicates a possible symbol cancellation. That is, one
must also consider the possibility that a series of τ zeros have been
emitted instead. This is quantified by considering (SxT −T ) addi-
tional δ arguments to augment equation 2, namely

δ̂t(i,τ, j) = at−τ (i)Ai j p j(τ)
t

∏
s=t−τ+1

B j(ds = 0) (4)

It must be noted that equation (4) is computed only if
∑t

s=t−d+1 ds = 0.

If, on the other hand, at( j) refers to an S-state, then symbol can-
cellation is desirable if the resulting sum, ∑t

s=t−τ+1 ds is equal to the
actual symbol associated with the S-state. If this holds, the whole
subsequence of symbols is treated as one symbol equal to their sum
and again, (SxT −T ) additional δ arguments must be computed for
at( j) according to the following equation:

δ̂t(i,τ, j) = at−τ (i)Ai j p j(τ)B j(
t

∑
s=t−τ+1

ds) (5)

This symbol cancellation allows the model to deal with deviations
of type (b). Maximization is now computed over all δ and δ̂ quan-
tities.
If, for some states of the best-state sequence a symbol cancellation
took place, it is useful to store this information in a separate two-
diemnsional matrix s, by setting the respective s( j, t) element equal
to “1” (a zero indicates that no symbol cancellation took place).
Matrices ψ and c are still used for backtracking purposes.

4. TRAINING THE HMMS

We have so far focused on the required modifications to the Viterbi
algorithm in order to calculate the recognition probability and best
state sequence of a symbol string D given a HMM H . We now
turn our attention to the training algorithm for the HMMs. For
each type of musical pattern, a set of K symbol sequences, O =

[D(1)
,D

(2)
, . . . ,D

(K)], is chosen for the training phase. The goal
of the training stage is to adjust the model parameters to maximize
the probability P(O | H ) = ∏K

l=1 P(D(l) | H ). This is achieved
by means of an iterative procedure. During each iteration, each ob-
servation sequence D

(l) is presented to the input of the respective
variable duration HMM and for each D

(l), the best-state sequence
is calculated by means of the modified Viterbi algorithm that was
introduced in section 3.3. Let BPl denote the best state sequence
associated with symbol sequence D

l . The reestimation equations
for the Viterbi algorithm stem from the cumulative processing of all
best-state sequences, namely

• Âi j = no. o f transitions f rom state i to state j
no. o f transitions f rom state i , ∀i 6= j, taking into ac-

count all BPls. If i = j then Aii = 0 by the definition of the
variable duration HMM.

• µ̂i = average number o f symbols spent at state i, taking into
account all occurrences of state i in all BPl’s.

• σ̂i = deviation f rom µi o f the number o f symbols spent at state i,
taking into account all occurrences of state i in all BPl’s.

• We have chosen not to reestimate the B matrix for reasons that
will be explained below.

4.1 Special cases of the A matrix

Although, the above reestimation formulas are valid in the general
case, for a large number of musical patterns that we studied, certain
simplifications are possible for the reestimation of the state transi-
tion matrix A.
First of all, if we assume that all notes are present in every instance
of the musical pattern, then in this case it suffices to initialize the
state transition matrix with 1’s on the first diagonal and no reesti-
mation of A is needed. Equivalently, this means that each Z-state Zi
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in the best path is followed by an S-state Si and each Si is necessarily
followed by Zi+1.

Secondly, if we want to deal with missing notes, then state tran-
sitions Zi → Si+1 should also be made possible. In the state tran-
sition matrix the respective elements A(Zi,Si+1) must be initialized
with positive values. In this case, reestimation can still be omitted,
if we are confident with the initialization values. If, however, we
want to proceed with the reestimation of A, then, clearly, A is upper
triangular and only values on the first and second diagonal will be
affected.

A more complex case occurs, if a musical pattern consists of
sub-patterns that repeat themselves in a row, with a varying num-
ber of repetitions. Such is the case with several musical patterns in
the context of Greek Traditional music, due the expressive perfor-
mance of instrument players. In this case it is desirable to include
backward transitions as well, upon initializing the HMM. Although,
the A matrix will no longer be upper triangular, the reestimation for-
mula still holds.

4.2 The symbol probability matrix B

We have assumed that only zeros are emitted from a Z-state and
each S-state can only emit one symbol. Thus, each column of B has
one element whose value is equal to 1, BZi(ds = 0) = 1 and all other
elements are zero valued. For each S-state, the respective column
has also one element whose value is equal to 1, BSi(ds = mi) = 1
and all other elements are zero valued. Therefore no reestimation of
B is necessary. For the patterns that we studied, we observed that,
due to the performance of instrument players, in a limited number
of cases, certain music intervals can be one quarter tone higher or
lower than expected. This can be accommodated if, each S-state is
also allowed to emit, with a small probability, symbols that are one
quarter tone higher/lower than the symbol associated with the state.
Due to the limited number of such cases, reestimation can still be
avoided.

5. APPLICATION OF THE METHOD IN THE CONTEXT
OF GREEK TRADITIONAL MUSIC

The musical system of Greek Traditional music and the techniques
of instrument players give the resulting sound material a radically
different structure when compared with that of the western equal
- tempered intervalic system (system of musical scales) [10],[5].
Although the proposed classification scheme is also applicable to
western type of music, we chose Greek Traditional music since this
poses more difficulties in recognition.

From a large number of types of transitory musical patterns,
encountered in practice in different instrumental styles, we have
selected the twelve most typical cases, in a monophonic environ-
ment. Here, the term monophonic refers to a single non-polyphonic
instrument, such as the Greek Traditional clarinet, recorded under
laboratory conditions with an ambient noise of less than 5dB. The
Greek Traditional clarinet is an instrument that closely resembles
the western-type clarinet.
The choice of the types of patterns was suggested by musicologists
on the basis of a) their common use in practice and b) their respec-
tive time elasticity. The time elasticity of a musical pattern refers
to the phenomenon of stretching its total length, up to five times in
some cases, while retaining its musical function. It is assumed that
the patterns to be classified have been isolated from their context by
means of a manual segmentation process.

A set of 1200 musical patterns were generated by four profes-
sional Greek Traditional Clarinet players, involving all the afore-
mentioned twelve types of musical patterns. For the feature genera-
tion stage, a number of robust fundamental frequency tracking algo-
rithms were employed, including Brown’s narrowed autocorrelation
method [7], Tolonen’s multipitch analysis model [8] and Brown’s
pattern recognition algorithm based on the constant-Q transorm
[9]. As an example, consider the narrowed autocorrelation method,
where we used a moving window of 1024 samples (multiplied by a
Hamming function) and narrowing was achieved by means of four

shifted versions of the autocorrelation function.
For the quantization step, quarter-tone resolution was adopted and
an alphabet of 121 discrete symbols was used, implying music in-
tervals in the range of −60 . . .+60 quarter-tones, i.e. G = 60.
The training set for each musical pattern consisted of 60 observa-
tion sequences, that exhibited the deviations from the prototype pre-
sented in section 3.2. A total of 600 patterns were used as the test
set.
At an average, for each variable duration HMM, the reestimation al-
gorithm converged after 40 iterations. Parameter T , which defines
the maximum allowable time spent at each state, was set equal to
100 symbols for the Z-states and 20 symbols for the S-states. This
was due to the time elasticity of the musical patterns that we stud-
ied.
Our tests were carried out using Matlab. The overall recognition
rate was above 95%.

6. CONCLUSIONS AND FUTURE RESEARCH

This paper provides a modified Viterbi algorithm for the calculation
of recognition probabilities generated by variable duration Hidden
Markov models, capable of providing increased classification accu-
racy of musical patterns to predefined classes. A methodology for
constructing such HMMs is also presented and various issues re-
lated to the training algorithm of the HMMs are analyzed. A case
study involving patterns originating in the context of Greek Tradi-
tional music is also presented. The suggested approach can be use-
ful in a number of content-based retrieval systems including query-
by-humming and repeated pattern finding systems. In the future, the
approach will be examined in relation with continuous observation
HMMs and segment models, permitting to depart from the discrete
observation hypothesis. Multi-dimensional feature vectors will be
studied including timbral and rhythmic features.
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