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ABSTRACT

In this paper we propose a multidimensional regression es-
timation algorithm for estimating a function from its first
derivatives. The proposed method is extended to introduce
the information about the function itself and higher order
derivatives. The proposed algorithm is able to exploit the
dependency between the output variables to provide a bet-
ter estimation of the function and it guarantees that the esti-
mated derivatives belong to the same function. The method
has been validated by synthetic test functions and it has been
used to model a MESFET transistor including intermodula-
tion distortion characterization, where the approximation of
the derivatives of the characteristic function is mandatory.

1. INTRODUCTION

Regression approximation from a given dataset is a very
common problem in a number of applications. In some of
these applications, like econometrics [1], telemetry or device
modeling [2], it is necessary to fit not only the underlying
characteristic function but also its derivatives. For instance,
to represent the intermodulation distortion (IMD) of a mi-
crowave device, it is necessary to approximate derivatives up
to the same order of the intermodulation products to be con-
sidered [3]. Usually, up to the third order is considered [2].

Several methods have been employed to simultaneously
approximate a function and its derivatives: splines, neural
networks, filter banks, etc. For further details see [4] and
references therein. Regression estimation from samples of
the function and its derivatives becomes a multidimensional
regression estimation problem, in which the output variables
are dependent on each other. Therefore, an individual regres-
sion estimation of each output will be discarding the depen-
dency between these outputs and will not be guaranteeing
that the estimated derivatives belong to the same originating
function.

Support Vector Machines (SVMs) are state-of-the-art
tools for linear and nonlinear input-output knowledge dis-
covery [5]. Support Vector Machines, given a labeled dataset
and a nonlinear mapping to a higher dimensional space, have
been proposed for solving pattern recognition [6] and re-
gression estimation [7] problems. Recently, they have been
extended for solving multidimensional regression estimation
problems [8] using a quadratic ε-insensitive cost function.

In this paper, we propose to solve the estimation of a
function from its first derivatives using as base algorithm the
Multidimensional Support Vector Regressor (M-SVR) pro-
posed in [8]. The extension for using the function values and
higher order derivatives is straightforward, as we will show

in Section 4. We have not included them in the initial algo-
rithmic development, because we believe it does not give a
further insight about the problem at hand and would proba-
bly obscure its presentation, making the paper hard to follow.
The M-SVR will have to be modified in two ways to be able
to solve the proposed problem. First, the algorithm will have
to be adapted to the actual problem. Second, to avoid numer-
ical instabilities, the cost function will be changed, leading
to an algorithm easy to implement and fast to solve.

The rest of the paper is organized as follows. The prob-
lem of estimating the function from its first derivatives is
detailed in Section 2, together with the needed modification
over the M-SVR algorithm. The optimization is carried out
using an Iterative Re-Weighted Least Square (IRWLS) pro-
cedure, which is detailed in Section 3. The method is ex-
tended to include the function and higher order derivatives
in Section 4. In Section 5, we show by means of computer
experiments the performance of the proposed approach. Sec-
tion 6 shows the results obtained when the method is applied
to model a MESFET transistor. Finally, we end the paper in
Section 7 with some concluding remarks.

2. FUNCTION ESTIMATION FROM ITS
DERIVATIVES

The problem we are going to solve is to estimate f (x) from
its first derivatives, given n data points (x1, . . . ,xn) in a d
dimensional space xi ∈ IRd . Therefore for each input vector
a d-dimensional label vector yi ∈ IRd will be available, where

yi =

[
∂ f (x)
∂xi1

∣∣∣∣
xi

,
∂ f (x)
∂xi2

∣∣∣∣
xi

, . . . ,
∂ f (x)
∂xid

∣∣∣∣
xi

]
= ∇x f (xi).

We define the estimated function f̂ (x) = wT φ(x), where
w is a weight vector and φ(·) is a nonlinear transformation of
the input vector x to a higher dimensional space (the feature
space, φ(x) ∈ IRH and H ≥ d). We need to solve a multi-
dimensional regression problem for finding w, in which we
need to reduce the error between the derivatives of the esti-
mated function and the yi vector:

ei = yi −∇x f̂ (xi) =[
yi1 −wT

φ
′
1(xi),yi2 −wT

φ
′
2(xi), . . . ,yid −wT

φ
′
d(xi)

]
,

where we have defined φ
′
j(xi) =

∂φ(x)
∂xi j

∣∣∣∣
xi

.

A Multidimensional Support Vector Regressor (M-SVR)
has been recently proposed [8]: given a labeled data set
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{(xi,yi)}, i = 1, · · · ,n, with xi ∈ IRd and yi ∈ IRQ, we need
to optimize

min
w j ,b j

1
2

Q

∑
j=1

‖w j‖2 +C
n

∑
i=1

L(ui),

where ui = ‖ei‖ =
√

(eT
i ei), eT

i = yT
i − φ

T (xi)W−BT ,

W = [w1, . . . ,wQ], B = [b1, . . . ,bQ]T and

L(u) =
{

0, u < ε

u2 − ε2, u ≥ ε
,

is a quadratic epsilon-insensitive cost function.
This multidimensional problem needs to be modified to

solve our particular function approximation problem. First,
instead of having a vector φ(x) and a matrix W to construct
the error vector, we have a unique weight vector w and a ma-
trix that contains the derivatives of φ(x). The second modi-
fication is a slightly change over the cost function:

L(u) =
{

0, u < ε

u2 −2uε + ε2, u ≥ ε
, (1)

to make its derivative with respect to u continuous and to
avoid numerical instabilities. To sum up, we are left with the
following unconstrained functional

LP(w) =
1
2
‖w‖2 +C

n

∑
i=1

L(ui), (2)

which needs to be minimized with respect to w, where

ui = ‖ei‖=
√

eT
i ei,

ei = yi − (φ
′
(xi))T w,

φ
′
(xi) = [φ

′
1(xi), . . . ,φ

′
d(xi)],

and L(u) is given by (1).

3. RESOLUTION OF THE MULTIDIMENSIONAL
SUPPORT VECTOR REGRESSOR

To optimize the proposed multidimensional regression es-
timation problem, we are going to follow an Iterative Re-
Weighted Least Square (IRWLS) procedure which has been
successfully applied for solving SVMs in [9, 10] and has
been recently proven to converge to the SVM solution [11].
To construct an IRWLS procedure, we first obtain a first or-
der Taylor expansion of L(u), leading to the minimization of

L
′
P(w) =

1
2
‖w‖2 +C

(
n

∑
i=1

L(uk
i )+

dL(u)
du

∣∣∣∣
uk

i

[ui −uk
i ]

)
(3)

where uk
i = ‖ek

i ‖ and ek
i = yi− (φ

′
(xi))T wk. Then, we need

to construct a quadratic approximation as follows:

L
′′
P(w) =

1
2
‖w‖2 +C

(
n

∑
i=1

L(uk
i )+

dL(u)
du

∣∣∣∣
uk

i

(ui)2 − (uk
i )

2

2uk
i

)

=
1
2
‖w‖2 +

1
2

n

∑
i=1

ai(eT
i ei)+CT, (4)

where

ai =
C

uk
i

dL(u)
du

∣∣∣∣
uk

i

=

{
0, uk

i < ε

2C(uk
i −ε)

uk
i

, uk
i ≥ ε

. (5)

CT are constant terms that do not depend on w. This
functional is a regularized weighted least square problem in
which the weight ai depends on the previous solution, so one
needs to iterate to find the fixed point solution.

The functional L
′′
P(w) is a quadratic approximation to

LP(w) in (2) that presents the same value L
′′
P(wk) = LP(wk)

and gradient ∇wL
′′
P(wk) = ∇wLP(wk) for w = wk. There-

fore, we can define pk = ws −wk as a descending direc-
tion for LP(w), where ws is the least square solution to (4),
and we can use it to construct a line search method [12], i.e.
wk+1 = wk +ηkpk. The value of ηk can be computed using
a backtracking line search [12], in which ηk is initially set to
1 and if LP(wk+1) ≥ Lp(wk), it is iteratively reduced until a
strict decrease in the functional in (2) is observed.

Now we are going to obtain ws, the solution to L
′′
P(w) in

(4), equating its gradient to zero

∇wL
′′
P(w) = w−

n

∑
i=1

φ
′
(xi)eiai = 0,

which can be expressed as follows:

w+
n

∑
i=1

φ
′
(xi)Dai(φ

′
(xi))T w =

n

∑
i=1

φ
′
(xi)Daiyi.

We have defined Dai as a d × d diagonal matrix with ai as
its diagonal elements, (Dai)lk = aiδ [l − k]. Finally, we can
express it in matrix notation as follows:

[ΦT DaΦ+ I]w = ΦT DaY. (6)

ΦT = [φ
′
(x1), . . . ,φ

′
(xn)], Da is a nd × nd diagonal matrix

where each d×d submatrix is defined as (Da)i j = Daiδ [i−
j] and Y = [yT

1 , . . . ,yT
n ]T is a nd-dimensional column vector.

The system in (6) can be solved using kernels. In order
to do so, we are going to apply the Representer theorem [5]
which states that the optimal solution can be constructed as
a linear combination of the training samples in the feature
space, i.e. w = ΦT

β , which can be replaced into (6) leading
to:

[ΦT DaΦ+ I]ΦT
β = ΦT DaY. (7)

Pre-multiplying (7) by the pseudo-inverse of ΦT Da:

(DaΦΦT Da)−1DaΦ[ΦT DaΦΦT +ΦT ]β = Y,

and extracting common factor ΦT Da from the brackets,
leads to

(DaΦΦT Da)−1DaΦΦT Da[ΦΦT +Da
−1]β = Y.

This equation can be simplified to

[H+Da
−1]β = Y, (8)

where we have defined H = ΦΦT , which is a kernel matrix
only formed by inner products of φ

′
j(xi).

The IRWLS procedure for solving the multidimensional
regression problem to find a function from its derivatives can
be summarized in the following steps:
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1. Initialization: set β
0 = 0, ui = ‖yi‖ and compute ai from

(5).
2. Compute β

s = [H+Da
−1]−1Y and set ηk = 1.

3. Set β
k+1 = β

k + ηk[β s − β
k] if L(β k+1) < L(β k) go to

Step 5.
4. Set ηk = ρηk with 0 < ρ < 1 and go to Step 3.
5. Recompute ui and ai, set k = k +1 and go to Step 2 until

convergence.

4. EXTENSIONS

The extension of the proposed method to include sam-
ples from the function and from higher order derivatives is
straightforward. In this case, the vectors yi and ei will be
constructed with all the available information and the proce-
dure in Section 2 and 3 can be easily replicated. To illustrate
this point, we propose the following example, where yi and
ei are, respectively

yi =

[
f (xi),

∂ f (x)
∂xi1

∣∣∣∣
xi

,
∂ f (x)
∂xi2

∣∣∣∣
xi

,
∂ 2 f (x)

∂xi1∂xi2

∣∣∣∣
xi

]
,

ei =
[
yi1 −wT

φ(xi),yi1 −wT
φ

′

1(xi),

yi2 −wT
φ

′

2(xi),yi3 −wT
φ

′′

1,2(xi)
]
.

Finally, when some data is more reliable or less noisy, or
the range of the derivatives is clearly different, a weighted

norm is more convenient for ui, i.e. ui =
√

∑Q
j=1 c je2

i j, where
Q is the dimension of yi and c j are the corresponding weights
with each dimension of yi. It is straightforward to find
out that, in the algorithm, this just supposes to include the
weights in the diagonal matrix Da as (Dai)lk = aiδ [l− k]ck.

5. SYNTHETIC EXPERIMENTS

First of all, the performance of the proposed method has
been validated by synthetic experiments. 8 functions sam-
pled from a two-dimensional input space, proposed in [13],
have been used. Their analytical expressions can be found in
[13] or [4].

The following methods will be compared. The conven-
tional SVR will be used when only the samples of the func-
tion are used. When the samples of the function and the first
order derivatives are jointly used, the proposed method (la-
beled “M-SVR” in the following) is employed. Finally, when
only the samples of the two first order derivatives are used,
again the proposed method (labeled “M-SVRd” in this case)
is applied. In all cases, Gaussian kernels are employed. The
Signal to Error Ratio (SER), expressed in dB, between the
true function/derivatives and its corresponding reconstruc-
tion has been used as figure of merit.

For the sake of a fair comparison, in the results to be
presented a similar number of total samples is used for all
methods. A Signal to Noise Ratio (SNR) of 10 dB has been
considered for the samples of both function and derivatives.
SVR was trained with a uniform grid of 19× 19 sampling
points (361 samples for the function), M-SVRd with 13×14
sampling points (364 samples, 182 for each derivative) and
M-SVR with 11×11 sampling points (363 samples, 121 for
the function and for each derivative). The optimal kernel size
(variance), as well as the parameters for all methods (C and
ε), have been determined by cross-validation.

Table 1 compares the performance of the three methods
under test in terms of the SER (dB) obtained in the recon-
struction of the 8 test functions and their first order deriva-
tives. To help the comparison task, the mean value over the
8 function has also been included. For the derivatives, the
mean value obtained for both of them, with respect to x1 and
with respect to x2, is presented.

The methods including the samples of the derivatives, M-
SVR and M-SVRd, clearly out-perform the SVR in the re-
construction of the derivatives. Moreover, they also improve
the reconstruction of the function. Consequently, the infor-
mation of the derivatives is clearly helpful in the reconstruc-
tion of a function. In this case, the M-SVRd provides better
results for the derivatives while the M-SVR is better for the
reconstruction of the function.

6. NONLINEAR SMALL-SIGNAL MODELING OF A
MESFET FOR INTERMODULATION DISTORTION

In this section, the proposed method is used to reproduce the
intermodulation distortion (IMD) behavior of a microwave
Metal Semiconductor Field Effect (MESFET) transistor. To
address this problem, the model must accurately represent
not only the nonlinear current-voltage (I/V ) characteristic,
but also its derivatives up to the same order of the intermod-
ulation products to be considered [3]. In applications with
amplifiers and mixers, the usual is to consider up to the third
order IMD [2]. Therefore, the model must approximate up to
the third order derivatives.

The characteristic function of a MESFET transistors re-
lates the drain to source current Ids, with both the drain to
source, Vds, and gate to source, Vgs, voltages. Here we
are going to model the static drain to source current ap-
pearing in the MESFET equivalent circuit (see [14] for de-
tails). Typically, the transistor is polarized in a bias point,
(Vds0,Vgs0), and the incremental drain-to-source and gate-to-
source voltages,vds and vgs, are applied over this DC polar-
ization. With these premises, it is necessary to accurately
reproduce the Ids = f (Vds0,Vgs0,vds,vgs) dependence and its
derivatives with respect to the incremental voltages. Some
traditional methods [15, 14] propose to implement a trun-
cated (up to the third order) Taylor series expansion repre-
senting Ids in a small interval around the bias point,i.e.

Ids = Ids0 +Gmvgs +Gdvds +Gm2v2
gs +Gmdvgsvds+

Gd2v2
ds +Gm3v3

gs +Gm2dv2
gsvds +Gmd2vgsv

2
ds +Gd3v3

ds,

where Ids0 is the DC drain current and, (Gm, · · · ,Gd3) are co-
efficients related to the nth-order derivatives of the I/V char-
acteristic evaluated at the bias point.

In [14], a Generalized Radial Basis Function Network
(GRBF) is used to approximate the 10 coefficients involved
in the Taylor expansion individually. Here we propose to
employ the M-SVR method to approximate the characteris-
tic function and its derivatives. This method has the advan-
tage of allowing to extend the range of validity of the model
if the set of derivatives is measured at different values of vds
and vgs, which is not possible by using a Taylor based model.
Moreover, the interdependence of the derivatives is exploited
by the method, which can be clearly helpful, as the results
with synthetic data has probed. In the following, the capabil-
ity of this method for this application is tested by comparing
its performance with the method proposed in [14].
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For a real NE72084 MESFET, Ids0 and the 9 derivatives
(G coefficients) have been measured (by the method in [15])
in 533 different bias points, which gives a total of 5330 sam-
ples. 147 bias points have been assigned to the training set
and the remaining 386 bias points to the test set. A GRBF
with 75 activation units has been used for the method in [14].
Not a noticeable improvement was observed by increasing
the network size. Table 2 compares the SER of each method
for all the coefficients/derivatives.

Both methods provide very close results, which shows
the ability of the proposed method for this application, even
when only samples in a single point of the vds and vgs vari-
ables are available. Moreover, it can be seen that the method
provides slightly better results in the reconstruction of the
higher order derivatives, which are the noisiest ones.

7. CONCLUSION

A new multidimensional regression method to estimate a
function from the samples of the function and its derivatives
has been presented. The proposed method exploits the inter-
dependence of the derivatives to improve the reconstruction
task. Experimental results have shown that this approach
improves the performance obtained when the function is di-
rectly estimated from its samples. This demonstrates that
function estimation can benefit from the use of samples from
the derivatives.

The proposed method has been applied to the nonlinear
modeling of a MESFET transistor to reproduce the intermod-
ulation behavior. In this case, the derivative measures are
only available at the bias point, which limits the capability of
the proposed method since only derivatives at vds = vgs = 0
are given. However, the results provided by the method are
similar to the classical approaches based on Taylor series
expansions. Moreover, the method has the potentiality to
extend the small-signal range of the method if measures of
the derivatives are available for a wider range, unlike Taylor
based methods. Actually, serious efforts are dedicated to de-
velop accurate methods to measure the derivatives of Ids in
large signal. From these measures, taking into account the
results obtained with synthetic data, the proposed method is
expected to provide outstanding results.

Approximation of the function
F1 F2 F3 F4 F5 F6 F7 F8 Mean

SVR 19.1 27.0 24.0 21.9 29.3 25.6 26.8 16.3 23.8
M-SVRd 21.0 29.0 27.1 20.1 27.7 26.2 27.2 16.4 24.3
M-SVR 21.5 29.9 27.7 23.1 29.6 27.3 28.5 16.7 25.5

Approximation of the first order derivatives (mean value)
F1 F2 F3 F4 F5 F6 F7 F8 Mean

SVR 12.3 11.3 11.2 14.9 12.1 12.2 11.4 11.6 12.1
M-SVRd 17.8 18.0 18.7 17.9 16.1 17.3 16.3 14.6 17.1
M-SVR 17.0 17.0 17.9 18.2 15.6 16.5 15.5 13.3 16.4

Table 1: SER (dB) for the reconstruction of the 8 test func-
tions and their first order derivatives using a similar number
of total samples
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