
AN ADAPTED FILTER BANK FOR FREQUENCY ESTIMATION

El-Hadi Djermoune and Marc Tomczak

Centre de Recherche en Automatique de Nancy, CRAN-UMR CNRS 7039, Université Henri Poincaré Nancy 1
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ABSTRACT
In this paper, a parametric spectral estimation method using
an adapted filter bank is presented. The subband decomposi-
tion is performed classically through filtering and decimation
stages. The decision about stopping or carrying on the de-
composition of a given node is taken according to a new stop-
ping rule. The latter uses a measure of whiteness of the resid-
uals resulting from the node considered. Using Monte Carlo
simulations, the results achieved with the proposed method
are compared to those obtained with other methods perform-
ing fullband and subband estimations, in the case of noisy
exponentials. The analysis points out the advantages of the
proposed method.

1. INTRODUCTION

The advantages of a subband decomposition approach, in the
framework of parametric spectral estimation, have been em-
phasized by several authors these last years. This idea en-
ables one to transform a complex estimation problem into
a set of subproblems, each much simpler than the original
one. Moreover, since the early work of Quirk and Liu [1],
it is known that subband decomposition enhances the perfor-
mances of parametric estimators. More recently, approach-
ing the problem from different points of view, Steedly et al.
[2], Rao and Pearlman [3], and Tkacenko and Vaidyanathan
[4], have pointed out the merits of subband decomposition.

The decomposition is achieved classically through filter-
ing and decimation stages, but the question remains of how
to perform the decomposition properly. In particular, a ques-
tion which arises is the endpoint of the decomposition. At
first, a tradeoff must be reached between two alternatives. To
improve frequency resolution, it is necessary to increase the
decimation factor, but the number of data samples reduces as
the decimation gets deeper. Secondly, it would be desirable
to stop the decomposition as soon as all the information is
retrieved. These remarks suggest to use adaptive forms of
decomposition rather than simple uniform ones. In this case,
the decimation is carried out according to the spectral con-
tent of the subbands encountered, but the problem is then to
establish a stop–criterion that determine an optimal (in some
sense) decomposition tree.

For instance, in [5], the selection of the optimal decom-
position is made by maximizing the number of modes over
the whole decomposition tree. The number of modes lying in
some band being unknown, it has to be estimated using, say,
the minimum description length (MDL) criterion [6]. The
problem which arises with such an approach is that it does
not ensure that all the spectral information has been retrieved,
because order criteria are not always reliable. As an alterna-
tive, we propose to use a stop–criterion that reflects the qual-

ity of the estimation in a given subband, that is a measure
of whiteness of the corresponding residuals. Unlike adap-
tive decompositions using order criteria, the decision about
stopping or following up the decomposition is made after the
estimation process. This allows one to minimize the number
of possible missed components. In addition, it will be shown
that the number of terminal nodes is reduced, thus decreasing
the computational load.

The paper is organized as follows. In section 2, after a
brief recall about subband parameter estimation of complex
exponential signals, the problem addressed in this paper is
set forth. Then, in section 3, an adaptive subband decom-
position using a test of whiteness is proposed. Simulation
results are presented in section 4 to point out the advantages
of the method. Finally, the conclusions are given in section 5.

2. PROBLEM STATEMENT

Consider the following complex signal composed of M com-
plex sinusoids

x(n) =
M

∑
k=1

hk exp( jωkn)+ e(n), n = 0, ...,N −1 (1)

where {ωk = 2π fk} are the desired frequencies and {hk} are
unknown complex amplitudes. e(n) is an additive zero-mean
complex Gaussian white noise.

The estimation of parameters hk and ωk may be achieved
using different methods. For example, in this paper, we
consider the well-known Tufts and Kumaresan (TK) method
[7] although other approaches should lead to similar results.
The TK method performs a reduced-rank pseudoinverse of
the forward–backward data matrix to get the prediction co-
efficients, from which the frequencies ωk may be obtained.
Then, the amplitudes hk may be computed by performing a
least-squares estimation using equation 1.

In order to reduce the problem complexity [8] and in-
crease the resolution, a uniform subband approach may be
considered. Using filtering and decimation operations, it al-
lows one to decompose the original signal x(n) into a set
of subsignals, each being representative of a particular fre-
quency band. If a total decimation factor d = 2i is used,
where i is the decomposition depth, each subsignal x(q)(n),
q = 1, ...,d, contains or not some components (m) and thus
may be modelled as

x′(n) =
m

∑
k=1

h′k exp( jω ′
kn)+ e′(n), n = 0, ...,N′−1 (2)

where x′ denotes x(q) for simplicity. The subband param-
eters h′k and ω ′

k may be estimated as in the fullband using

2171



0 0.05 0.1 0.15 0.2
−25

−20

−15

−10

−5

0

5

10

15

0.5 0.6 0.7
−25

−20

−15

−10

−5

0

5

10

15
1st subband 2nd subband

frequencyfrequency

S(
f )

(d
B

)

S(
f)

(d
B

)

Figure 1: Problems related to spectral overlapping with a 2-
channel wavelet filter bank (D10 filter).

the TK method. Once all subband parameters ĥ′k and ω̂ ′
k are

obtained, simple transformations may be used to get the full-
band values (see [2, 4]).

2.1 Filter bank structure

Here it is important to recall that, in the context of frequency
estimation, the decimation filters have to be chosen carefully
because of the overlapping and the mode attenuation they can
introduce [4, 8]. In particular, the use of wavelet–based dec-
imation filters without some preprocessing of the data may
cause ambiguities about the true positions of modes, due to
spectral overlapping [9]. This is illustrated by the following
example. Consider a signal containing two cisoids:

x(n) = he j2π f1n +he j2π f2n + e(n) (3)

where f1 = 0.24, f2 = 0.73 and h is fixed so that SNR =
9.5 dB. Figure 1 shows the averaged pseudospectra of the
two subband signals using 100 numerical simulations. As
can be seen, after a decimation by 2, the first mode appears
in the two resulting subbands at f1 = 0.24 and f ′1 = 0.74.
This is also true for the second mode. So this particular ex-
ample shows that two drawbacks may be observed. At first, it
is rather difficult to distinguish between the true modes and
their aliases, thus resulting in an ambiguity about the fre-
quency that has to be converted to the fullband [4]. Secondly,
a problem of resolution occurs (e.g. between f1 = 0.24 and
f ′2 = 0.23) when it was not the case before decimation.

So, for frequency estimation, we prefer to use the struc-
ture presented in figure 2 (designed for a decimation factor
of 2). The decimation filters are frequency-shifted versions
of a unique low-pass filter with passband edge fp = 0.125
and stopband frequency fs = 0.25. These values are cho-
sen so that the successive passbands are contiguous. Using
this structure ensures that all modes are not attenuated on the
whole frequency interval f ∈ [0,1]. In addition, the effects of
overlapping are strongly reduced. However, the number of
subbands is increased by a factor 2 (four bands are generated
when the signal is decomposed by a factor 2).

The pseudospectra corresponding to the first and third
subband signals are shown in figure 3. We observe that each
peak appears once in the two subbands, which confirms that
the overlapping phenomenon is reduced. This structure is re-
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Figure 2: The uniform filter bank used for frequency estima-
tion.
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Figure 3: Pseudospectra of the first and third subband sig-
nals.

tained for the adaptive method that will be described later.

2.2 Why an adaptive decomposition?

Adaptive schemes are preferable because they tend to
achieve a compromise between the decimation level and the
signal complexity. Thus, at each node (or band), the decom-
position may be stopped or continued according to the spec-
tral content of the subband considered (see figure 4).

Several kinds of stop–criteria may be considered, like
power–based criteria, order criteria, spectral flatness mea-
sures, etc. For example, in [5], the criterion used is based
upon the number of components determined by the MDL.
The decomposition is stopped if the estimated number of
modes in a particular node is greater than that obtained in its
children. The problem which arises with such an approach
is that it does not ensure that all the spectral information has
been retrieved, because order criteria are not always reliable
and what is more the decision is taken before the subband
estimation. Thus, the resulting decomposition does not take
into account the fact that an isolated mode may be estimated
without needing a deeper decomposition. The method pro-
posed in the next section tries to overcome this problem.

3. ADAPTIVE SUBBAND DECOMPOSITION

The adaptive subband decomposition method we propose
here aims to satisfy two constraints. Firstly, if in some sub-
band, the estimation procedure cannot resolve two modes,
the decomposition should continue. Secondly, if all spec-
tral information has been retrieved accurately in a given sub-
band, there is no need to carry on the decomposition, and
thus it should be stopped in order to reduce the complexity
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Figure 4: Uniform and adaptive decompositions. Each divi-
sion represents a filtering/decimation stage.

and the risk of false detections. For this purpose, we propose
a stop–criterion that uses a measure of whiteness [10] of the
residuals.

The residuals are defined as the difference between a sub-
signal and the estimated subsignal containing m′ modes

ε(n) = x′(n)− x̂′(n) = x′(n)−
m′

∑
k=1

ĥ′k exp( jω̂ ′
kn) (4)

for n = 0, ...,N′−1. Ideally, if all subsignal modes have been
retrieved (i.e. m′ = m), the residuals are close to a white
noise. If one or more modes are missed, then the sequence
ε(n) is no more white.

3.1 The criterion

The principle of the test for whiteness used here is now
briefly recalled. First, assume that ε(k) is a wide sense sta-
tionary Gaussian sequence. Its power spectral density is de-
noted by P(ω). Let us define W (P) as

W (P) = log
1

2π

∫ π

−π
P(ω)dω − 1

2π

∫ π

−π
logP(ω)dω (5)

Drouiche [10] showed that W (P) = 0 if and only if P(ω) is
constant, and W (P) > 0 otherwise. In practice, the power
spectral density is estimated by the periodogram defined by

P̂N′(ω) =
1

2πN′

∣

∣

∣

N′−1

∑
n=0

ε(n)e jnω
∣

∣

∣

2
(6)

The test that has to be constructed is intended to decide
whether or not ε(n) is white. In other words, it should verify
the null hypothesis H0 : P = c if ε(n) is white and the non-
null hypothesis H1 : P 6= c if it is not the case. Here c is a
positive constant. Consequently, we consider the following
quantity

ŴN′ = log
1

2π

∫ π

−π
P̂N′(ω)dω − 1

2π

∫ π

−π
log P̂N′(ω)dω − γ

(7)
where ŴN′ is an estimate of W (P). The parameter γ denotes
the Euler constant (γ = 0.57721) and has been introduced
to prevent bias under the null hypothesis, i.e. to ensure that

EH0ŴN′ = 0. The quantity ŴN′ is a measure of whiteness :
ŴN′ ≈ 0 under H0, and ŴN′ → ∞ if ε(n) is maximally cor-
related. In practice, we reject H0 if ŴN′ > tα , where tα is
a threshold obtained using significant level α (which de-
fines a false alarm rate). According to [10],

√
N′ŴN′ and√

N′(ŴN′ −W ) converge in law to normal distributions as
N′ → ∞, under H0 and H1 respectively. Using this result, the
threshold is given by

tα =

√
2ν0√
N′ erf−1(1−2α) (8)

where ν0 =
√

π2/6−1, and erf−1(x) is the inverse of the
standard error function

erf(x) =
2√
π

∫ x

0
e−t2

dt (9)

The significance level α is a free parameter. In practice, it is
often taken inferior to 10%. In this paper, we fixed α = 1%.

3.2 The complete algorithm

The method proposed is now briefly summarized.
1. Choose decimation filter and decimation factor.
2. Perform a subband decomposition of the signal.
3. For each resulting node do the following

(a) obtain the subband parameters h′k and ω ′
k,

(b) generate the residuals,
(c) compute tα and test for whiteness,
(d) if residuals are white, this node is a terminal one, else

the decomposition must be carried on.
4. Search for a decomposable node from the tree and obtain

its children by further decimation.
5. Repeat step 3, until no decomposable node is found.
6. Convert the subband parameters to their fullband values.

4. SIMULATION RESULTS

In this section, we present an experiment made on a simu-
lated signal. The basic decimation filter is a low-pass equirip-
ple FIR filter with both passband and stopband ripples fixed
to 0.01. The simulation signal used here consists in two si-
nusoids in zero-mean white noise:

x(n) = he j2π f1n +he j2π f2n + e(n) (10)

where f1 = 0.11 and f2 = 0.15, as in [5], and the number
of samples is N = 160. The signal-to-noise ratio is vary-
ing between −10 and 20 dB. At each SNR, multiple simula-
tions have been performed using 200 realizations of the ad-
ditive noise. The results achieved using the suggested adap-
tive subband decomposition are compared to those obtained
with three other estimation methods : The first considers the
adaptive decomposition proposed in [5], the second uses a
uniform decomposition with a total decimation factor d = 8,
and the third performs a fullband estimation. All methods
are compared on the base of their estimation variances, their
miss ratios and their percentage of terminal nodes relatively
to the uniform decomposition (see figure 5).

The fullband prediction order is set to 32; it is then di-
vided by 2 as soon as the decomposition gets deeper. This
particular choice of the prediction order gives to the fullband
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Figure 5: Results achieved on the simulation signal.

estimation an advantage in view of the complexity of the sig-
nal. Indeed, one can observe from figure 5(a) that the vari-
ance of the first component obtained in the fullband is the
lowest one. The uniform decomposition leads to the poorest
variance while the proposed criterion allows to the adaptive
decomposition to reach approximately the same variance as
the fullband estimation.
The miss ratio of the proposed method is the smallest one,
and converges faster to zero (figure 5(b)). In particular, the
miss ratio of the adaptive decomposition is smaller than that
of the uniform one. This is because the a priori choice of the
decimation factor is not suitable for the signal considered.

The great advantage of the proposed method over an
MDL-based adaptive decomposition lies in the fact that the
former leads to a much smaller number of terminal nodes
over which the final estimation process is performed (figure
5(c)). Thus, in general, using the suggested method allows
one to stop the decomposition at a lower decimation level.

The MDL-based decomposition leads to approximately 80%
of the number of uniform decomposition nodes at low SNR
and decreases to 40% at high SNR. The proposed method at-
tains only 25% of the number of terminal nodes. This result
is of high importance when analyzing very intricate signals
composed of a large number of components and/or samples.
This is the case for example for carbon–13 nuclear magnetic
resonance spectroscopy signals [11].

5. CONCLUSION

This paper presents a new method for adaptive subband de-
composition. First, a filter bank structure which is well suited
to the problem of frequency estimation is presented. Then, a
stop–criterion which is intended to allow the estimation pro-
cedure to retrieve all useful spectral information without a
large additive computation complexity is introduced. Us-
ing Monte Carlo simulations, it is shown that the proposed
method is advantageous over both a uniform decomposition
and an MDL-based adaptive approach, in terms of the vari-
ance and the number of terminal nodes.
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