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ABSTRACT

Beamforming for UWB signals has some special prop-
erties that are different from the narrowband case. The
investigation of ideal time-delay beamforming for short
pulses shows a striking feature, namely the absence of
grating lobes in the beampattern. This means that the
spacing of the array elements is not limited by half of the
wavelength, hence high resolution can be achieved with
only a few array elements. Further, the beampatterns
sidelobe structure is mainly dependent on the impulse
shape. Concerning digital beamforming, a realistic as-
sumption is that only filters with a few coefficients can
be used, due to the very high sampling rate needed for
digital processing of UWB signals. But again, the use
of broadband pulses allows to obtain acceptable digi-
tal beampatterns with low complexity. This means that
a realization of digital beamforming for UWB signals
might be possible in the near future.

1. INTRODUCTION

Ultra-Wideband (UWB) communication systems and
Multi-Antenna (MA) systems belong to the few emerg-
ing key technologies in wireless communications. In or-
der to avoid strong interference of conventional narrow-
band transmission systems by ultra-wideband signals,
the transmit power of UWB systems is fairly limited,
which leads to a restricted coverage. This very weak-
ness is opposite to one of the main strengths of MA
techniques; they are able to increase the range. Such a
reversal should indicate the potential of a marriage of
these two complementary techniques [5].

Numerous others benefits can be envisaged. For
example, the capability of Multi-Antenna systems to
spatially distinguish among wavefronts impinging from
different directions not only facilitate the equalizer de-
sign of UWB systems by reduction of delay spread, but
rather also enables a further increase in data rate -
1 Gbit/s over air becomes feasible. Moreover, by MA
techniques, narrowband and broadband interferers may
be almost perfectly suppressed so that the number of
concurrent users can be significantly increased [4]. Last
but not least a distinct reduction of electromagnetic ra-
diation can be expected from UWB & MA, which in
turn may also save battery life.

However, a large number of different challenges do
resist. For example, at a first glance digital beamform-
ing seems to be prevented due to the extremely high
sampling rate. In contrast, analog beamforming requires
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adjustable true time delays, such delays exhibit notice-
able tolerance and therefore less precision. The aim of
this contribution is to demonstrate some first steps to-
wards beamforming for UWB systems.

2. BEAMFORMING FOR WIDEBAND
PULSES

To start with, we consider the case of a linear equis-
paced array, consisting of N equidistant omnidirectional
sensors. If ¢ is the propagation speed, ® the angle of in-
cidence of an impulse signal s(t) measured with respect
to broad-side direction and d the distance between two
sensors, then the signal recorded at the n-th sensor is
given by
d .

sn(t) = s(t + n- sin(®)), n=1(1)N. (1)
Note that in this preliminary investigation we omit the
influence of a real UWB channel, e.g. the multipath
propagation.

The ideal ”delay and sum” beamformer produces

N-1
b(®,0,t) = Z sn(t —nTe.m) (2)

n=0

where 79, = (d/c)sin(©) are the steering delays and
O the steering angle. In order to achieve a time-
independent beampattern' the total energy of the beam-
former output is often used

BP(O,d) = (/

— 00

oo

b(®. 0, 1)) R

which reduces to the conventional narrowband beam-
pattern if s(t) is of sinusoidal type.

We will show now some simulation results for typ-
ical UWB signals, as the twice differentiated Gaussian
impulse

g(t) = (1 — 167 (t/ AT)?)e 87/ AD)? (4)

where the nominal duration AT is set to 2 * 10710,
leading to a -3 dB bandwidth from 5GHz to 11.5 GHz,
and an alternate UWB waveform [3]

ga(t) _ 1 (ef4w(t/AT)2 o

== - aef47r(at/AT)2) (5)

LA very similar looking alternative beampattern is defined as
6] BP(O,®) = max; |b(®,0,1t)|
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Figure 1: Beampattern of g(t) (solid line) and g, (%)
(dash-dotted line) impulses arriving at 90° on array 1
with 2 elements at distance 14\/2 and of narrowband
signal with wavelength A\ (dashed line)
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Figure 2: Beampattern of g(t) (solid line) and g, (%)
(dash-dotted line) impulses arriving at 0° on array 1
with 2 elements at distance 14A/2 and of narrowband
signal with wavelength A (dashed line)

where the nominal duration AT is set to 2.5 107105
and the scaling parameter o to 1.5, leading to a -3dB
bandwidth from 3.4GHz to 8 GHz. The wavelength
of the corresponding sinewave is chosen according to a
nominal center frequency of 6.85 GHz. Two typical ar-
ray configurations are considered throughout this paper:

e Array 1 has 2 elements at distance 14\/2
e Array 2 has 8 elements at distance A

Hence in the narrowband case, grating lobes will appear
in the beampattern. In the figures, simulated BP (0O, @)
are shown for signals arriving at 0° and 90°, respectively,
and the beampattern corresponding to g(t), g, (t) and a
sinewave of frequency 6.85 GHz are plotted in the same
figure for comparision.

Now, in Figures 1 to 4 a striking feature of impulse
beamforming is observed, namely the absence of grating
lobes [3, 6]. A simple explanation of this phenomenon
is that the grating lobes occur at different angles for
different signal frequencies in contrast to the main lobe
which is always located at the same angle. Hence, for a
broadband signal the grating lobes are averaged out.

Of course, this property is of great importance for
UWRB array design, since it allows to choose the sensor
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Figure 3: Beampattern of g(t) (solid line) and g, (t)
(dash-dotted line) impulses arriving at 90° on array 2
with 8 elements at distance A and of narrowband signal
with wavelength A (dashed line)
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Figure 4: Beampattern of g(t) (solid line) and g,(t)
(dash-dotted line) impulses arriving at 0° on array 2
with 8 elements at distance A and of narrowband signal
with wavelength A (dashed line)

distance without the A/2 limitation, enabling to achieve
high resolution with only a few array elements.

A further interesting property that can be observed
in Figures 1 to 4 is the dependence of the beampattern
and especially its sidelobes on the pulse shape. This is
the object of further research and may have influence on
the pulse shaping in future UWB systems.

3. DIGITAL BEAMFORMING

Consider the sampled outputs s, [k] of the received ana-
log signals with sampling frequency f, then a time de-
lay error Ag ., = Tenfs — floor(re ., fs), where floor(z)
means the integer part of x, between the ideal steer-
ing delay measured in samples and its preceding sample
point will occur. Therefore, some way must be found
to recover the desired signal value from its sampled val-
ues around floor(7g ., fs). For this purpose, all digital
beamformers use some kind of interpolation [7, 9]. The
simplest method is to use nearest-neigbour interpola-
tion (NN-interpolation), thus replacing the signal value
at the desired steering delay with the signal value at
the nearest sampling point. For narrowband beamform-
ing, nearest-neighbour interpolation is known to pro-

830



(=]

T
o (=]
‘

Level (dB)
&
o

—-40F

[}
Angle in degree

Figure 5: Ideal beampattern of g(t) arriving at 90° on
array 1 (solid line) and its digital beampattern using
NN-interpolation with fs = 20 GHz (dash-dotted line)
and f, = 40 GHz (dashed line)
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Figure 6: Ideal beampattern of g(t) arriving at 0° on
array 1 (solid line) and its digital beampattern using
NN-interpolation with fs = 20 GHz (dash-dotted line)
and fs = 40 GHz (dashed line)

duce large errors. This detrimental effect can be re-
duced by heavily oversampling of the input signals [7];
however, due to the immense bandwidth of UWB sig-
nals, this seems to be unrealistic even within the next
years. A better method is to use linear interpolation be-
tween the two nearest sampling points, which requires
two multiplications for each desired signal value. This
approach still produces large errors in the narrowband
case without adequate oversampling [8]. It should be
mentioned that these two interpolation methods are the
optimum methods for the case that only one or two sig-
nal samples can be used to approximate a time-shifted
signal value [1]. A theoretical treatment of the nar-
rowband digital beampattern for various interpolation
methods can be found in [9]; an extension to the broad-
band case is a topic of further research.

In Figures 5-12, the digital beampatterns for the 2
UWRB pulses considered is compared to the ideal analog
beampattern. The simulations are restricted to the case
of array 1. In Figures 5-8, nearest-neigbour interpola-
tion is used in order to approximate the true time delays
at sampling frequencies fs = 20 GHz and f; = 40 GHz.
In Figures 9-12, linear interpolation is used at sampling
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Figure 7: Ideal beampattern of g, () arriving at 90° on
array 1 (solid line) and its digital beampattern using
NN-interpolation with fs = 20 GHz (dash-dotted line)
and fs; = 40 GHz (dashed line)
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Figure 8: Ideal beampattern of g,(t) arriving at 0° on
array 1 (solid line) and its digital beampattern using
NN-interpolation with fs = 20 GHz (dash-dotted line)
and fs; = 40 GHz (dashed line)

frequencies fs = 20 GHz and f; = 40 GHz.

The use of broadband signals turns out to reduce
the errors significantly in comparision to the narrow-
band case, and the digital beampattern of the UWB
pulses are quite close to the ideal pattern, at least in
the case of fs = 40 GHz. This is due to the fact that
in the narrowband case, the interpolation errors from
different sensor signals can add constructively, while in
the broadband case, the averaging effect reduces the in-
terpolation errors. In fact, at fs=40GHz, the cheapest
method, namely nearest-neigbour interpolation which
needs no multiplications, leads to an acceptable beam-
pattern. This means that fortunately, digital delay-and-
sum beamforming of UWB signals is not complicated
from the viewpoint of pure digital signal processing com-
plexity.

4. CONCLUSION

State-of-the-art in analog-digital-conversion are sam-
pling frequencies up to 50 GHz, so that digital beam-
forming of UWB signals can be carried out in principal
even nowadays. Nevertheless, such an approach is far
away from its partical use for mobile devices and even
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Figure 9: Ideal beampattern of g(¢) arriving at 90° on
array 1 (solid line) and its digital beampattern using
linear interpolation with f, = 20 GHz (dash-dotted line)
and f, = 40 GHz (dashed line)
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Figure 10: Ideal beampattern of ¢(t) arriving at 0° on
array 1 (solid line) and its digital beampattern using
linear interpolation with f; = 20 GHz (dash-dotted line)
and fs; = 40 GHz (dashed line)

for fixed access points because of their power consump-
tion and immense hardware costs. However, according
to Moore’s law, technology will progress and with ad-
ditional research in this area even digital beamforming
of UWB communication signals may find its way in the
future. This conjecture is further substantiated by re-
cent results in related areas, e.g. breast cancer detection
by UWB signals [2], where similar high-sampling digital
beamformers are already realized and in use.
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Figure 12: Ideal beampattern of g,(t) arriving at 0°
on array 1 (solid line) and its digital beampattern using
linear interpolation with f; = 20 GHz (dash-dotted line)
and f; = 40 GHz (dashed line)
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